Table of Contents

DESKLOP.COM AP .. e 10
DYy =] (o] o 1T SR U o =TT RRTR 11
D21 (o o ) PP UE PP 12
SYSIEM REOQUINTEMIENTS. ... eeeeeii ettt ettt e e e e ettt e e e e e e e e ababe e e e e e e e e s nnbabeeeeaaeeesannrnnneaaeeanns 13
DeVvelopers' GUIAE ... 14
The DTAPI Class-Based Object FrameWOrK .............eeivieiiiiiiiiiiiiice e e e e 15
o T 2= To =SOSR 16
ClBSSES .. ettt e et e e e e e b b et e et e e e e e e e a b b e te et ee e e e e e nnbaneee s e annbrreeaas 17
L0 o] 1Tt A 1Y/ 01 ST PT TR R 18

T =T 1 7= g o] TR UPUPUSTRT 19
Y131 Lo o PR E TP STRRR PR 20
S S Y (=] o o= PRSP PR S 21
Creating Persistent ODJECTES. ......ooi e 22
Working wWith PersiStent ODJECES .....cuiiiiiiiiiiiiiiie et r e e e e e e e e e e e annes 23
ReStOriNg PersiSteNt ODJECES......uuuiiiiii i e e e e e e e e s s e e e e e e s ennees 24
o T0) Q=T (1 E (=] | A O] o=t SRR 25
Subclassing PersistentObject and RootPersistentObJeCt .........ccveeiiiiiiiiiiiee e 26
LI T 1 L2353 Y] 1= 2 S 28
(1T T g Lo B BT =Tod (o] 1= PRSP 29
THE DT FIHESYSIEM ...ttt ettt e e e e e ettt e e e e e e e e e s babe e et e aeeesaannbeneeeeaeennneees 30
(U IS (U ol (0[PP PUPPPUPUPPPPPPIRE 31
1070 49T o o] 01=] 0 1 £SO 32
LAYOUL IMBINAIGETS ... 33
Common WINAOWS aNd dIAI0gS ......oieeiieiieeee et e e e e e e e e e e e nneeees 35
Event Handlers and ACLION LISEENEIS .........uiiiiiiiiie ettt e s sebeee e 37
IS (=T 11 o o [P TP PPUPPPPPRURR 37

o3 T ] £ O PEPTT R TUPPPPPRTPT 37

BV BNIES e 38

B OCUS ...ttt e e e e et e e e e e e e e e e e e e a e e e e e e e aannne 39

e L[ SO P PP PP PPRPTPPPPPPRRPR 40
1070] a1 7= 11 o 1=] ¢3S PP T PR 41
FOCUS EVENIS ..., 42
KEYDOAIT EVENLS ... ..ottt et e e ettt e e e e e e s anb b e e e e e e e e e s nanbeeeaeaans 43
FOCUS-ATVANCE EVENES....coiiiiiiiitiiii et e e et e e e e e e e e anbbeeeaaaeas 44
REFOCUS BVENES......eeii ettt e e e e e e e s bbb e e e e e e e e e snnbareeeeeeaan 45
ProgrammatiC FOCUS ChaNQES ......uuuiiiiiiiiiiiiiiiie ettt ee e s s eee e e e e e s s st e e e e e e e s eeeaeeeas 46

Y o] 0] LTo7= a1 TN Y o To = a7
(6= 18] Tod a1 g Yo T 2Y o] o] o L1 o] g < S SRS a7

0= 18] o3 1T = T =S 47

Y [ Te | L= 1T = Vg (- PSSP 47

Y 10T o L= 1 ] = U o L 48



FaY o] o] LTo= L a [0 T =\ = 1Y 01T R 49

VAT A1 T q T I Vg I Y o] o] oz L1 o] o SRR 50
D=1 (o o ) L PR PURRRR 51
=0 1111 To T @2 e Lo [ PR UPPRUSRRT 52

(L g = To TS I= o T I I 1 SRR 52

Uploading and Downloading COE ........ccua i a e 53

1070] 1010110 H P T U TRR 54
(D=7 o TU T T |1 o PP UPPRUSRR 55
TRE CONSOIE ...ttt e ettt e e s sttt e e e snb e e e e e anbaeee s anbaeeeesnneeeeas 56
APl Reference Manual ..........coooviiiiiiiiiiii e 57
DeSKLOP.COM PACKAGES ...cieiiiiiiiiieeii ettt ettt e e e e e e e et et e e e e e e e annbeeeeaaaeeenneees 58
ClASS HIBIAICRY ...ttt e e e e ettt e e e e e e st et e e e e e e e e e s abeeeaaaaeeann 59
DN @] o] [=Tox 1 = o o110 o R T T SSPUPR 61
L0 Fo TS SO PRTP 61
D @] o] Tox S TP UUTRTRPSTRT 61
01 Tod 1T L PP RP PR 61

D 17 T o PRSP 63
ClASSES ..ttt e et e bttt e e bt e e e bttt e e e nateaba b e e nenes 63
01 Tox 1T L PRSPPI 63

D I AY o] o] o 1o o PSSR 64
L0 Fo TS TSRO 64

Y Y o] o] o= 11T o RO PSP PRPPTPPRRR 64
FUNCLIONS ...ttt ettt e oo oottt e e e e e e e bbbt e et e e e e e e e nabebeeeeaaeeeaannbeeaeeeeannneees 67
DA o] o] [Tox=1 1 ol 1Y, =T gF= Vo 1= T RUUSRT 68
L0 Fo TS RSP 68
FUNCLIONS ...ttt ettt oo oottt e e e e e e e bbbt e et e e e e e e e nnbebeeeeaaeeeaannbeeaeeeeannneees 68
DR WAY o] o] [Tor= i 0T g1 = £=1 11 @] o] [=ox SR 70
L0 LT PSR 70
APPlICAtiONPIrEfSODJECT ....iii i e e e e e s e e e e s e ar e e e e e e 70
FUNCHIONS ..ttt e ettt e e ot bt e e st et e e e e bb e e e e e bbe e e e e sabeeeesanbeeeeeaneeeesnbaeeenas 70
(DN AN o] o] [Tor=Ni{o] 01 r= 1 (=T L o] 1Yo USSR 71
L@ T SO 71
APPlICAtiONSTALEODJECL ......eeiiieiiee e e e e e e e 71
FUNCHIONS -ttt e e oo e ettt e e e e e e e e a bttt e e e e e e e e e annabeeeeeaeeeaabeneaaaaaeanns 71

[ AN o] o)AV A g To [0 Y U PP RT 72
L0 Fo TS RSP 72
APPWINAOW ...ttt ettt e e e e oottt e e e e e e s e e aasbb e e e e e e e e e e annbbeeeaaaeeeaannneneeeaanns 72
[TV 1o o PR PPRRPRRRIN 74

[ 1N 1 - | PP PTPUPT PRSP 75
L0 LTSRS 75
[TV 1o o SRR UPRRPRRRIN 75
DT AIMAYLAYOULMBINAGET ... ..ciieiiitie ettt e ettt e ettt e e e e e e e es b s e e e e et e ae b e e e e e e eesabb e eeneeeas 77
L0 LTSS 77
AITaYLaYOULMABNAGET ... ..o 77
LT Tod 1T 1= P EPRP PR PPRRRP 79



DTAHAChMENtLAaYOUIMANAGET ......uveiiiieie it e e e e e st r e e e e s s r e e e e e s s st aeraaaeesassnraerreeaeessnnnns 80

L0 o T7 S SRS 80
AttachmMentLayOUIMEBNAGET ..........ueeiiiiieee ittt et e e e e e e e e r e e e e e e e annnbeeeeaaeeas 80
FUNCLIONS ... 83
DTBASICBULION ... 84
(01 1= 11T TSP PPPPPRPPPRt 84
BaSICBULION.......cco i 84
FUNCLIONS ... 85
DI ToT 0] 1 =T USSR 86
L0 o T1 S RSO 86
2700 g =T =T o ] (o USSR 86
0T 1 1RSSR 86
DTBOorderedRadiOBULIONGIOUD. .. .cciieeiiiiitiiieieeeeesesititireeee e e s s sttt e ereeessssnsbaaeeeaeesssannsrnreeeeaaeessnnsns 87
L0 o T7 S RSO 87
BorderedRadiOBULIONGIOUD ... ..uveiieeieeaie ittt ee e e e ettt e e e e e e e et e e e e e e s e annbbeeeeeaeeeaaannnneeeeaeaeas 87
FUNCLIONS ... 88
DTBOrderedWIiNAOW..........coooiiiiiii e 89
(01 1= 11T TS PPt 89
BorderedWindOw ... 89
BOrder@dWiNAOWRFTAIME...........oiiiiieieee ettt e e e e s e e e e e e s e e e e e e s e aanbaaereeeeeaeanntaneeaeeeas 90
0T 1 o 1SS 90

D I8 011V T 91
L0 o T7 S RS 91
0T 1 o 1RSSR 91

D I (0 1YY= VAV o (o USSP 92
(01 1= 11T T P 92
BrowserWindOW ... 92
FUNCLIONS ... 93

I 8 = U1 o o 1SR 94
(01 1= 11T T 94
01 TSP 94
0T 1 1RSSR 95

D = 1o =TSSR 96
L0 =TT P 96
L0 11 = od PSR 96
0T o 1RSSR 96

D O T Tod =0 ) SO SSR 97
(01 1= 11T TSP 97
(1 dT=Tod 4 =70 ) QO 97
FUNCLIONS ... 97
DT COIUMNLAYOULMEBNAGET ... eeeeeeieeee ettt e e ettt e e e e e e ettt e e e e e e e s s absbeeeeaeaeesaannteeeeaaaeesaanees 98
(01 1= 11T T P 98
(O70] (¥ aqT 1 = )Y 010111V, F= Vg = Vo =] PSR 98
0T 1 o 1RSSR 98

[ IO 0] ¢ ¥ o e = o | S 99
L0 o T7 S S 99



L0 0 010 1= o | AP 99

FUNCHIONS ...t e e e e ettt e e e e e s st te e et e eee e s e e s ataeeeeeaeeesasnebneeeeaeessannnenaaeeeans 102
DT CON MM . 103
(01 1= 11T T 103
FUNCLIONS ..o 103
DT CONtAINET ... 104
(01 1= 11T T 104
(07091 7- V1 0 1= U PP 104
FUNCHIONS ...ttt e e e e et e e e e e e s e teeeeeeaeessa s ntaeeeeeeeeesasantneeeeaeessannnenaaeenans 105

[ IO 0] ] (= o | 106
L0 =TT P 106
(0] 1= 0 106
0T 1 1 1 PSSP SPERR 108

D I 1= = 1] ] (01 PR 109
(01 1= 11T T 109
DEtailSROW. ... 109
FUNCLIONS ... 110
(DT {oTs VAV g To [0 Y AU 111
(01 1= 11T T 111

[ T= 1o VAV o o 11 RS 111
FUNCHIONS ...t e e e e e e e e e e e s sttt e et aeeee s s s s ataeeeeeaeessasstaneeeaaeessannneeaaeenans 111
D= o |1V =T g = Vo T 112
L0 =TT PSS 112
L] o3 1T 1RSSO 112
(DRI B] o] 080111/ s [O0] o] o o] 21 ) S 114
(01 1= 11T T 114
(D] ¢e]o] B0 )Y/ (@0] 1 4] s o] =To ) QT UERPRR R 114

[T T o ] 1P 115
DTEVENIGIabbhEr ... 116
(01 1= 11T T 116
Y=Y a1 C T o] o= PP PPPPPPPP 116
L] o3 T 1SS 116

[ I Y=Y (@ o= o SRR SRSRR 117
L0 =TT PSS 117
Y= 1 (@] =T o USSR 117
L] o3 1T 1SS 118

[ I 1 7= 0 L0111/ ] o - T PSSR PRSRR 119
(01 1= 11T T 119
[T Tox o 1P 119

(D I 11 o T= 4T o T PP UURRP PSRRI 120
(01 1= 11T T P 120
ACCESSCONIIOILISE ... 120
L] o3 1T 1SS 121

[ I 1 1= £S3 C=1 oJSPREUR PRSP 124
L0 o T7 S PSS 124
1] o3 T 1SS 124



D I 1 =T o] o T T RSP 132

L0 =TT P 132
FUNCLIONS ... 132
DTFIOWLAYOULMABNAGET ... it ieieeeeeeie ettt e e e ettt e e e e e s aa e bee e e e e e e e aaaaasbeeeeaaeeesannnbeeeeaaeesaanrees 133
(01 1= 11T T 133
FIOWLAYOULMEANAGET ....eeeeiieeieiiiiee ettt ettt e e e e e e ettt e e e e e e e e e s nnbeaeeeeaeeaeannnbeneaaeaeas 133
FUNCLIONS ... 133
DTFONIPIODET ... 134
L0 =TT P 134
0T 111111 1 oSSR 134
0T 1 1SR UPRSR 135
DTGrALAYOULCONSITAINTS ....coiiiiiiiiiie e s et e e e s st e e e e e s e e e e e e e s e st e e e e aeeesannnnraneeeeeeeaanrens 137
L0 =TT P 137
LT o | IE-NY o 10 (0] 1S i = 1 o £ SRR 137
FUNCLIONS ... 138
DT GHOALAYOULMANAGET ...ceiieiiiiititieee e ettt e e e e ettt e e e e e e e aabe e e e eaa e s s aaanbeeeeaaaeesaaannbseeeeaaeesasens 139
(01 1= 11T T 139
GriOLAYOULMABNAGET ....ciieiiiieieeie e ettt e e e ettt e e e e e s e aabe e e e e e e e e e s nbnbeeeeeaaeeaansnnreeeaaaaeaanns 139
FUNCLIONS ... 139

[ I 1= 1o 1YY o o PP 140
L0 o T7 S P 140
0T 1 1 EURR PRSP 140

D I I/ T S 141
L0 o T7 S PSS 141
012 o SR 141

[T T o ] LR 141

[ I o I Y 0T U 142
(01 1= 11T T P 142

L I T 0 1S = TSR 142

[T T o ] 1P 142
DTICONSVIBW ... 143
L0 o T7 S PSS 143

T 0] g SV T RS 143
L] o3 T 1SS 144

(D [ = (o [T (T W PSP PTUPPTPRR 145
L0 o T7 S PSS 145
e o[y T PSPPSR 145

[T T o ] 1P 146
DTIMAgEBULION ... 147
(01 1= 11T T 147
IMAGEBULION ... 147

[T o Tox (o 1P 147
DTIMAGERESIZE ...ttt e e e e e e e e e e e e s s st eetaaeessantataeeeaaeeesannnnteaeeaanns 148
L0 o T7 S P 148
L] o3 1T 1SS 148

[ I T o] 2 T 1= PRSP PRSRR 149



o 5] o = oSSR 149
FUNCLIONS ... 150
DT K EY VRN ... 151
(01 1= 11T T 151
KEYEVENT ... 151
FUNCHIONS ... 151
DTLabelledTeXtBOX ...cccoeeiiieeeeeeeeeee 152
L0 =TT P 152
0= 10 T= 1= I =1 20 ) SRR 152
0T 1 1 1 EURP S UPRRR 153

(D N0 10 111 =T = Vo 1= PO P RO PP PP 154
L0 =TT P 154
(oY 10141V =T F= T [ PSPPSR 154
FUNCLIONS ... 155
DTLINKAIEA ... 156
(01 1= 11T T 156
LINKAIA. ... 156
FUNCLIONS ... 156
D0 I 1= o ) P SER 157
L0 - T7 S P 157
S 150 ) SRS 157
0T 1 1 SRR SPRRR 158

D I8 = o 159
L0 o T7 S P 159

1Y/ = o 159
FUNCLIONS .. 163

D YT U] = = PP 164
(01 1= 11T T 164
L= U] = T SRR 164

[T T o ] 1P 166
DTNAMEACAIIDACK ... et e e s e e e e e s st e e e e e e e sennnnraaeeeanns 167
L0 o T7 S P 167

N E= T =0 (@1 {1 o= Tod G USRS 167
L] o3 1T 1SS 167

(D A1 LY =100 o] o T 1= o | PSSRSO 168
L0 =TT P 168

N E= LA VZ=T @ 0] 1 4T o To ] 1= o | S TP EUTTR R 168

[T o Tox o ] 1P 168
DTNAtiVETEXTINPUIBOX .....eeeiiieeee ittt e e ettt e e e e e e s et e e e e e e e e e nnnbeeeeeaans 169
(01 1= 11T T 169

N LA N I [ ] 01U 11.=To ) P UEPTR 169
L] o3 1T 1SS 169

[ O] 01T 53 (o] = USRS SRSRR 170
L0 o T7 S P 170
Lo S 551 4= 1 (O o] [T SRR 170



0 T01 1 =T (I 1S] (=T 1 (O] o= o RS 172

0T 1 1 PSR PPERR 173

N I = o SRR 174
(01 1= 11T T 174
=1 PO 174
FUNCLIONS ... 175
DT PEISISIENTAITAY ... .eeeeeeie e e ettt e ettt et e e e e e et ettt e e e e e e e e e nabeeeeeeaaaeeaanbeteeeeaaeeesansnneeesaannneees 176
(01 1= 11T T 176
e Iy (=T 17 £ - Y 176
FUNCHIONS ... e e e et e e e e e e s et te e et e eeeesaasntaeeeeeaeeeaasnstneaeeaeessannnenaaeenans 177
DT P OgIESSBaA ... 178
L0 =TT P 178
PIOGIESSBAl ... .o 178
FUNCHIONS ...t e e e e e e e e e e e s et te e et e eee e s s s s ataeeeeeeeeeaasnstneeeeaeessannneeaaeenans 178

(D I (0] 111 | S TP T PUP TP 179
(01 1= 11T T 179
FUNCLIONS ... 179
DTQUESLION ... 180
(01 1= 11T T 180
FUNCHIONS ...t e e e e et e e e e e s st e e eeaeee e s s e aataeeeeeeeeeaasnstneeeeaeessannneeaaeenans 180

N 1 U =T 1 PSP 181
L0 =TT P 181

L@ TN T= T TR 181
0T 1 1P EURP PRSP 181
DI = To [10] 2101170 0[] (o U1 o SRR 182
(01 1= 11T T 182

R To[To] 21U 1 0] o[ € (o]0 o RPN 182
FUNCHIONS ... 183

(D I {=Tox = T To | PR TT USSR 184
(01 1= 11T T P 184

[ ETox = L o] [P ERT T 184
0T 1 1 EERPSPRRR 184

D I =T 1o (=AY 0T 1S 185
L0 =TT PSS 185
=T L0 LAY 11 1 PSSR 185
L] o3 1T 1SS 186

[ Yo (o] 12 - PR PPSRR 187
(01 1= 11T 187
Yol o] 11 S7= T PP 187

[T o Tox o 1P 188
DT SCrOINGTEXIBOX ...ttt ettt e e e e e e et e e e e e e e e s snbbeeeeeaaesaaannnnneeaaeaeann 189
(01 1= 11T T 189

Y od (0] 1T g T I 1= 20 ) SRR 189
L] o3 1T 1SS 190

[ IS od (o] |- Vo1 PSR PPSRR 191
L0 o T7 S PSS 191



Yot (0] |1 22= T o 1< 191

FUNCHIONS ...t e e e e ettt e e e e e s st te e et e eee e s e e s ataeeeeeaeeesasnebneeeeaeessannnenaaeeeans 192

(D IS 1o [T DI T= 1oL PP SRPT 193
(01 1= 11T 193

Y [To =] BT 1o o TP PEETR 193
FUNCLIONS .. 193

D IS 1o [T RSP TRR U SETTRRRPO 194
(01 1= 11T T P 194

5 11T SRR 194
FUNCHIONS ...ttt e e e r e e e e e s e et e et e eeeesaaantbeeeeeaeesaasnetneeeaaeessannnenaaeesans 195

D 185 7 TSRS 196
L0 o T7 S P 196

5 - o] S 196
0T 1 1 PRSP UPERR 196

D 1] Y SRS 197
(01 1= 11T 197
117/ USRI 197
FUNCLIONS ..o 197
DTTableLayOUtCONSLIAINTS ........ueeiiiiee ettt e e e e e ettt e e e e e e e s aae e e e e e e e e e sananbeeeeeaeeeaannees 198
L0 o T7 S P 198
TableLayOULtCONSITAINTS . ......iii i e e e s s s e e e e e e s e st ereaeeeseannrrnaeeeaes 198
0T 1 1 SRR PPERR 198

D I = o] [T IE= Y 10 111 = g =V =T SRS 199
L0 =TT P 199

I To] =TI Yo 0141 o= Vo 1= PP 199
FUNCLIONS ..o 200
DTTabVIEW .. 201
(01 1= 11T T 201
TV W .. ——— 201
FUNCLIONS ... 202

N I 41 = ) SR 203
L0 =TT P 203
I 0 203
L] o3 1T 1SS 203
DTTEXIIMAGELADEN ... ..o e e e e e e e e e s e e e e e e e e s annnnreeeeeanns 204
L0 =TT PSS 204
QL= L =T =T I U T PR OPPRS 204

[T T o ] 1P 204
DTTEXIHNPUIBOX ... 205
(01 1= 11T T P 205
=] o101 = o) TR 205

[T o Tox o ] 1P 205

[ I =31 ] o]0 11 = Lo ) R 206
L0 o T7 S P 206
LI 01110 2 206
L] o3 1T 1RSSO 206



D I =t ] 10 =Y o R 207

L0 =TT P 207
TEXUNPUEFIEIA ...ttt e e e e e e e et e e e e e e e e e e nanbeeeeeaan 207
FUNCHIONS ... 208
DTTEXILADEL ..o 209
(01 1= 11T T 209
TEXILADEL ... e —— 209
FUNCLIONS ... 209
D I =l I (=TT PSS 210
L0 =TT P 210
L= I =Y A= 2 PRSP 210
FUNCHIONS ...t e e e e et e e e e e e s e e et e eeeesaa s ntaeeeeeaeeesansnstneeeaaeessnnnnneaaeesans 212

D 0 I I = SRR 213
L0 =TT P 213
I 11 U 213
FUNCLIONS ... 213
DTTransientDIialOgWINAOW ............ooiiiiiiiiee et e e e e e e e e e s et ee e e e e e e e e anees 214
(01 1= 11T T 214
TranSieNtDIAIOGWINTGOW ...ttt e e e e e e et e e e e e e e e e nnnbeeeaaaeeas 214
0T 1 1SR URRRR 214
D U] 7 - 215
L0 o T7 S P 215
0T 1 1SR UPRRR 215
D N1V o o SRRSO 216
L0 =TT P 216
LAY o o TR 216
FUNCHIONS ... 217
(D VY= To] o] g To [ =01 = To ) PRSPPSO 218
(01 1= 11T T 218
WIAPPINGTEXIBOX .....teiieeiee ettt e e e e e ettt e e e e e e s nbe e e e e e e e e e snnbeneeaaaaaas 218

[T [ Tox o ] 1P 218
Appendix I: The Console COMMAaNAS .....ooooeeeeieieeeeeeeeeeeeeee e 219
Appendix Il: KeyEvent CoNStantS.........cooiiiiiiiiiii it 223
Appendix H: Color ValUES ... 225



Desktop.com API

The Desktop.com API (DTAPI) offers developers a robust programming language, designed to
create compelling web-based applications.

The DTAPI is based on JavaScript, but expands it to include the more robust features of an
object oriented programming language, including a class-based object framework with
inheritance, and an application package management system. These features supply both ease
of use in designing and writing applications as well as faster server access while running the
application.

As a web-based design tool, the DTAPI allows extensive server access, and offers a suite of GUI
elements. Server access allows developers to manipulate server based user files, including
persistent user data, as well as to create extensible applications using programming packages,
stored on the server. The DTAPI suite of GUI elements includes interactive elements and
graphics enablers. The suite provides tools for component-based design, automated user-
interactivity, and widgets for commonly used elements, such as scroll bars and user-input
devices.

DTAPI offers:
» support for familiar JavaScript and DHTML programming languages
» class based object framework with inheritance, functions, and methods
» package management system for efficient downloading of applications
» ability to store persistent data

« ability to browse, create, manipulate, upload, download and share server based user files
and folders

« graphical user interface builder, including:
» windows and focus control
* menus
* layout managers
* interactive elements, including event handlers and a suite of widgets:
* including text input, buttons, check box, list box, slider and scroll bars
e prompts, questions and other common dialog boxes
e pane based help window
* image displays
» text displays and fonts
« ability to launch applications in single or multiple instances
* type registry for file type mapping
» suite of data types
*  browser window launch
» application icons

10



Developers' Guide

This manual also includes a Developers' Guide, which describes the principles behind the
Desktop.com API, and offers an overview of the process used in developing and submitting an
application for inclusion on the Desktop.com site.

The Developers' Guide is designed to be used in conjunction with the Desktop APl Reference
Manual. While the Developers' Guide covers overriding principles and procedures used in
implementing the DTAPI, the APl Reference Manual defines all packages, classes, methods, and
functions used in designing for the Desktop.com platform. Both manuals often make reference to
related information in the other.

11



Devtool

Devtool, Desktop.com's developer tool, provides a unified interface for functions needed to edit
and test an application online. Devtool also offers tools specific to the Devtop environment, such
as the ability to upload and download files to and from our servers. Developers may write
applications off-line, then log into Devtop to upload, compile, run, debug, and touch up their
programs. Devtop allows you to create and share applications from one location.

Devtool provides the ability to:

e upload and download code to your account

» compile JavaScript for execution under the Desktop environment
e execute application code

« assemble application projects consisting of multiple files

» edit code on-line

» view debugging output from apps

e access the console, Desktop's command-line interface

Uploading and Downloading Code

Devtool includes its own file storage and management system. Uploading and
Downloading code is as easy as clicking on a button, allowing you to store work in
progress, as well as completed applications, in one directory, accessible from any
internet-connected computer.

Compiling Code

Devtool takes your application code, parses it for errors, and formats it for the Desktop
environment. It reports syntax errors, undeclared symbols, and unused symbols. The
changes it makes include stripping whitespace and comments, translating blocking
methods, and renaming identifiers.

Editing Code

Devtool includes an editor, Edwin, suitable for making quick fix modifications to code on-
line. The ability to edit on-line allows developers to debug without uploading and
downloading each time a fix is necessary.

The Console

The Console is Desktop's command-line interface, similar to a DOS or Unix shell, which
allows you to manipulate files in your filesystem, run applications, execute JavaScript
commands, and more. To access the list of commands available, simply launch the
Console, type "help," and press the Enter key.

12



System Requirements

This is a list of the minimum requirements for optimal performance of both the Desktop.com
platform and its development environment.

e Pentium Il 300mhz or higher

*  Windows 98 or NT

* 64 MB RAM or higher

» Microsoft Internet Explorer 5 or later
* 56Kbps modem

(Support for Netscape Navigator is planned for the near future.)

13



Developers' Guide

The Desktop.com Developers' Guide describes the principles behind the Desktop.com API, and
offers an overview of the process used in developing and submitting an application for inclusion
on the Desktop.com site.

The Developers' Guide is designed to be used in conjunction with the Desktop APl Reference
Manual. While the Developers' Guide covers overriding principles and procedures used in
implementing the DTAPI, the API itself serves as a reference manual in which all packages,
classes, methods, and functions used in designing for the Desktop.com platform are defined.
Both manuals often make reference to related information in the other.

14



The DTAPI Class-Based Object Framework

Most popular object-oriented languages, like C++ and Java, are class-based. In class-based
languages, the programmer declares classes which encapsulate data, and methods which act
upon or work with that data. Many class-based languages also have the concept of inheritance,
which allows the programmer to declare a new class that specializes or modifies the behavior of
another class.

The DTAPI uses JavaScript's ability to access underlying language components to implement
these features natively.

15



Packages

Desktop.com client code is downloaded to the browser only as it is needed. To make this
possible, the client code is broken into packages.

Packages are the way the DTAPI encapsulates specific bits of functionality. Each package
exports particular classes and/or functions, which makes them visible from outside the package.
The package may define other classes or functions that are not exported.

A package is a function in which classes, methods, and other functions are declared. Each
package has a Requi r es variable, which is named after the function itself. This variable must
be an array that lists the names of all packages required for the given package to work. The
DTAPI PackageManager will ensure that the required packages are present before it loads the
package.

For example, to create a package called PkgRect angl e which requires a package called
PkgShape:

functi on PkgRect angl e()
{

}
PkgRect angl e_Requires = ["PkgShape"];

...functions and cl asses. ..

Functions, classes and objects may be exported from the package using the DTAPI EXpor t
method on the package. Other packages will only have access to the classes and methods that
are exported. Note that all of a class' methods may be accessed through the class, so it is not
necessary to export them.

For example, to export the function | Li keRect angl es from the PkgRect angl e
package:

function | Li keRectangl es()

{

}
PkgRect angl e. Export (I Li keRect angl es);

16



Classes

Classes define an object with set properties and actions, and may be acted upon by methods
defined within the class.

Classes in JavaScript are defined by their constructor functions. (JavaScript, unlike C++ and
Java, allows only one constructor for each class.) After declaring the constructor function, use the
DTAPI Maked ass function to turn the constructor into a class.

For example, to create a Rect angl e class:

function Rectangl e(x, y, height, wdth)

{
this.x = x;
this.y =vy;
t hi s. hei ght = hei ght;
this.width = wi dth;
}

Maked ass(Rect angl e, PkgRectangl e);
Rect angl e. I nheri t From( DTObj ect) ;

The two arguments to MakeClass are the constructor function and the package in which the class
is declared. (The | nher i t Fr omcall is described below under Inheritance.)

Aiter calling MakeC ass( Rect angl e, PkgRect angl e), refer to the class using
simply "Rect angl e." (This is a regular JavaScript function object that has some extra
properties and methods, which we refer to as a class.)

Note that in the constructor, you must use the t hi S keyword to refer to the object being created.
To create a Rectangle object (an instance of the Rectangle class):

var r = new Rectangle(2,-2, 10, 50);

17



Object Types

The DTAPI categorizes object classes as object types. In JavaScript, t ypeof will always return
"obj ect, " as JavaScript does not recognize different types of objects created using classes.

It is useful to know an object's class in order to determine which methods may be used in relation
to it. The DTAPI object framework supplies two functions that will return an object's type (or

class): TypeOf ,and | SA
TypeO takes an object and returns a string containing the name of its class. For example:

var s = new Square(10);
alert(TypeO(s));

would display an alert dialog box with Squar e in it. Note that the class name does not include
the package name.

| sAtakes an object and a string and returns t r ue or f al se depending on whether the string
is the name of the class of the object, or the name of one of its superclasses. For example:

var s = new Square(10);
alert (1sA(s, "Square"));

would display an alert dialog box with t r ue in it.

18



Inheritance

Inheritance allows programmers to declare a new class which specializes or modifies the
behavior of a more generalized "superclass," and is a means by which related, subordinate
classes "inherit" methods from their parent class.

In the DTAPI, inheritance is accomplished using the | nher i t Fr ommethod.
For example, to create a Squar € class that inherits from Rect angl e:

function Square(x, y, size)

{

}
MakeCl ass(Square, PkgRectangle);

Square. I nherit Fronm( Rect angl e) ;

this. Rectangl e(x, y, size, size);

Note how the Rect angl e constructor is called within the Squar e constructor. A subclass
should always call its superclass' constructor, usually at the beginning.

Note, if a class does not inherit from anything, some things may not work. You should always
define a class as inheriting from DTObj ect , the base class, if nothing else.

19



Methods

Methods define and act upon properties of a class object. In JavaScript, methods are also
functions.

To define a method, after declaring the method function, use the MakeMet hod method of the
class.

For example, to create an ar ea method of the Rectangle class:

functi on Rectangl e_area()

{

}
Rect angl e. MakeMet hod( Rect angl e_area) ;

return this.height * this.wdth;

To invoke this method, call:

var r = new Rectangl e();
alert(r.area());

Note that the method function is declared with the name "Rect angl e_ar ea," but that the
method name itself is "ar ea." This marks the function as meant to be called as a method on the
Rect angl e class. MakeMet hod knows that the class name is Rect angl e, so it strips
that part off and leaves only "ar ea" as the method name.

Note that in methods you must use the t hi S keyword to refer to the object on which the method
is called.

It is sometimes desirable to change the way a method supplied by the superclass works. For
example, the set Si ze() method for the Rectangle class requires both a height and a width
parameter. To replace it in the Square class with a method which takes only one Si ze
parameter, use thet hi s. Cal | method, as shown:

functi on Square_set Si ze(si ze)

{
this.Call (Rectangle, "setSize", size, size);
}
Squar e. MakeMet hod( Squar e_set Si ze) ;
Note that the Cal | method invokes the method of a superclass on an object, bypassing normal

method invocation. Calling t hi s. set Si ze( Si ze) would call the setSize method of the
Squar e class, rather than that of its superclass, Rect angl e.

20



Persistence

One of the key features of the DTAPI is persistence. Persistence allows users to log out of their
Desktop, go to a different site or browser, log back in, and still have all of their files, and the
appearance of their Desktop exactly as they left them.

To allow users to save information for later retrieval, the DTAPI implements a concept called
Persistent Data. Persistent data is that which persists from user session to user session, and
includes such information as the user's ID and information, and the active or inactive state of the
application at the end of the last user session.

The basic unit of persistent data is the Persistent Object, or PO, which is an object that is
duplicated on the Desktop.com servers. All persistent data is stored in instances of

DTObj ect St or e. Per si st ent Obj ect or one of its subclasses. The properties of POs
may be numbers, strings, Booleans, or references to other POs. A group of POs, the next level of
abstraction, is called an Object Group. An Object Group is a collection of POs arranged in a tree,
with a special type of PO at the root of the tree. This special type of PO is the Root Persistent
Object, or RPO, which is like other Persistent Objects in that it can have properties, but is special
because it is the only type of PO that can be the root of an Object Group.

All Persistent Objects are identified by a three-number tuple. The first number is the user ID, the
second is the RPO ID, and the third is the child ID. Each user has their own user ID, and all of
that person's POs start with their user ID as the first number in the tuple. The second number
identifies an Object Group. Every PO within that group has the same first and second number in
the tuple. The third number identifies the particular PO within the group, with the RPO always
having a child ID of 0.

Persistent Objects are grouped into bundles under the Root Per si st ent Qbj ect class.
Root Persistent Objects are like files in that they bundle data together. Each

Per si st ent Obj ect must belong to a Root Per si st ent Cbj ect . (When creating a
Per si st ent Qbj ect , it must be associated with a Root Per si st ent Cbj ect .) When
a Root Per si st ent Cbj ect is deleted, all of the data associated with it (stored in

Per si st ent Qbj ect s) is also deleted.

21



Creating Persistent Objects

Persistent Objects (POs) must be associated with a Root Persistent Object (RPO) when they are
created. To associate a PO with an RPO, pass either a Root Per si st ent Qbj ect ora
Per si st ent Obj ect tothe Per si st ent Obj ect constructor. If an RPOis passed, the
new PQis associated directly with the given RPQ. If a POis passed, the new POis associated
with the same RPOas the POthat was passed in.

For example, with r po a Root Per si st ent Cbj ect :

new Per si st ent Cbj ect (rpo);
new Per si st ent Obj ect (po_a);

var po_a
var po_b

creates two Per si st ent Obj ect s that are both associated with the given
Root Per si st ent Obj ect.

22



Working with Persistent Objects

Per si st ent Obj ect properties may contain five types of data:

e strings,

e integers,

* Booleans,

» references to other Persistent Objects, and
* null

The set method must be used to set properties on a persistent object. For example:
po_a.set ("nyProperty", "nyVval ue");

would set the my Pr oper t y property of po to "nyVal ue," a string. The Set method must
be used to indicate to the object that the value must be sent to the server, and thus made
persistent. If Set is not used, the value will not be saved, and the property may disappear at any
time.

The calls to set other data types are similar. For example:
po_a.set("nylnteger", 10);
po_a. set ("nyBool ean", true);
po_a.set("nyNull", null);
po_a.set("nmyCbject”, po_b);

To read property values from a Per si st ent Qbj ect :

var s = po_a. nyProperty;
var i = po_a.nylnteger;
var b = po_a. nyBool ean;
var n = po_a.nyNull;

var o = po_a. ny(bj ect;

23



Restoring Persistent Objects

To restore a Persistent Object, use the f et chChi | d$ method. For example, if the po_a in
the previous example has just been restored:

al ert(po_a. myQoj ect); /1l shows "null"
po_a.fetchChil d$("myQoject");
var po_b = po_a. myhj ect;

Note that when Per si st ent Obj ect s are restored, references to other Persistent Objects
are also restored, but the objects themselves are not.

For more information, and a list of available methods, see DTObjectStore.PersistentObject.

24



Root Persistent Objects

The Root Per si st ent Qbj ect class is a subclass of the Per si st ent Obj ect class.

Instances behave exactly like regular Per si st ent Obj ect instances. The only difference is
that a Root Per si st ent Obj ect defines a group of Persistent Objects; therefore the RPO
constructor takes no arguments:

var rpo = new Root Persi stent Qbj ect();

As mentioned earlier, a Root Per si st ent Qbj ect is like a file: when it is deleted, all data
associated with it are also deleted. Also like a file, an RPO is not considered saved unless it is in
the Fi | eSyst em (For more information, see DTFileSystem.) The

Root Per si st ent Obj ect type determines what kind of file it is, and what application is
associated with it.

The relationship of Persistent Objects and Root Persistent Objects is designed to enhance file
management, and limit file proliferation.

25



Subclassing PersistentObject and RootPersistentObject

A subclass of a Per si st ent Qbj ect or Root Per si st ent Cbj ect may be generated
to create a new file type to associate with an application.

Remember that the constructors for both Per si st ent Cbj ect and
Root Per si st ent Obj ect take two arguments, even though they are normally called with

only one. (The extra argument is used when the object is being restored.) Also remember not to
do anything in the constructor but call the base class constructor:

functi on MyPersi stent Qbj ect (argl, arg2)
{

}
Maked ass(MyPer si st ent Obj ect, PkgM/App) ;

MyPer si st ent Cbj ect. | nherit Fron{ Per si st ent Obj ect) ;

this. Persistent Object(argl, arg2);

If you need to do anything normally done in a constructor, implement the const r uct method.
As always, call your base class' method first:

functi on MyPersi stent Obj ect _construct ()

{
this.Call (PersistentCbject, "construct");
this.set("nyProperty”, "nyVal ue");
this.set("nyQoject”, new
PersistentQbject(this));
}
MyPer si st ent Cbj ect . MakeMet hod( MyPer si st ent Obj ect _const

ruct);

The const r uct method is not a blocking function: no blocking functions may be called within

it. To bypass this limitation, make an'i ni ti al i ze$ method to call after creating a new
instance.

Note that because constructors are always non-blocking, you may create Persistent Objects in
the const r uct method. If you implement a const r uct method, you will probably also
have to implementar est or e$ and an updat e$ method.

Ther est or e$ method is called when an instance is being retrieved from the server and
restored, which presents an opportunity to fetch other objects from the server. For example:

26



function MyPersistent Cbj ect _restore$()

{
this. Call $(PersistentObject, "restore");
this.fetchChild$("nyCbject");
}
MyPer si st ent Cbj ect . MakeMet hod( MyPer si st ent Cbj ect _resto

red);

Calling f et chChi | d$ gets the associated object from the server. Note that this will delay the
calling routine, as it has to wait not only for the current object to be fetched and restored, but also
for all of the objects that its r €St or €$ method fetches.

The updat e$ method is similar to the r st or €$ method in that it is called when an object is

being updated with the latest data from the server. If necessary, you can make updat e$
ensure that associated objects are also updated:

function MyPersi stent Cbj ect _updat e$()

{
this. Cal |l $( Persi stent Gbj ect, "update");
DThj ect St ore. updat e$(t hi s. myQbj ect) ;
}
MyPer si st ent Qbj ect . MakeMet hod( MyPer si st ent Qbj ect _updat

e$) ;

Note that each f et chChi | d$ and f et chChi | dr en$ call will make trips to the server if
the object is not already located on the client. Using f et chChi | dr en$ is better than using
multiple f et chChi | d$ calls, because it groups all of the requests into one server trip.
DTObj ect St or e. updat e$ also always causes a server trip. (Rendezvous objects
may also be used to limit trips to the server.)

27



The FileSystem

The DTAPI provides a filesystem in which users, applications, and the system itself may store
information. The DTAPI filesystem is similar to UNIX or Windows filesystems, but has some
important differences.

The primary difference is that the DTAPI filesystem does not store files, it stores objects.
Specifically, it stores Persistent Objects and Root Persistent Objects (and their subclasses).
When this manual mentions a file in relation to the DTAPI filesystem, it refers to a

Root Per si st ent Obj ect and its associated object group.

The second difference is that you do not have to "save" your data. Most traditional programs work
on a file that they load into memory. After modifying the data in memory, the program then writes
the file back to the filesystem, possibly overwriting the old file. Using the DTAPI, programs work
directly with the data in the filesystem; when they make a change, it is immediately saved.

The structure for the DTFileSystem is made up of nodes, which are either directories or files. The
relationships among nodes are defined by links: hard links, smart links, and symlinks.

A hard link points from a directory node to a node (file or directory) that it contains, and serves as
the primary containment relationship between a directory and another node. A node can only
have one hard link pointing to it; in this way, every node can be said to exist at a single location in
the filesystem.

A smart link differs from a hard link in that it is viewed as a secondary link to a node, rather than a
link that defines a node’s location. Smart links may define secondary routes between directories
and/or files in a user's filesystem. Hard links and smatrt links only reference nodes within a single
user’s filesystem. Both hard links and smatrt links are backreferenced: calling

DTFi | eSyst em get Li nks$() will reveal both the hard links and the smart links that
point to a particular node.

A symbolic link, or symlink, is a path reference to another node in which only the target node’s
path is encoded. Symlinks are not backreferenced from their targets, and no validation is done on
their target paths until an attempt is made to access those paths. By convention, symlinks are
used only to create links to other users’ filesystems.

Locations within the filesystem are described as paths, which are strings of link names separated
by slash characters. Paths may traverse any kind of link: hard links, smart links, or symlinks.

The root directory is the top-level directory for a user’s filesystem. By convention, the
Desktop.com user interface does not expose the root directory to users; instead, the “My Files
subdirectory of the root directory is the root of what users may see. Files in other parts of the
filesystem are effectively hidden.

28



Files and Directories

As mentioned above, files in a regular filesystem are Per si st ent Qbj ect sin the DTAPI. It
is important to keep this in mind because it is often more convenient to talk about "files" than
"RootPersistentObjects."” For the end-user, there is no perceived difference between a normal file
and a DTAPI "file:" users experience Per si st ent Qbj ect s as files, manipulate them as
files, and call them “files." The distinction between the two is made only for developers.

Like a regular filesystem, the DTAPI filesystem provides a tree-like directory structure in which
each directory may contain other directories and files (Per si st ent Qbj ect s). Each user
has a private directory structure of their own, and it is not possible for one user to access another
user's files through the filesystem. (Use the DTFileSharing package to share files or access
shared files.)

In a user's directory structure, certain directories contain certain kinds of data. The "My Fi | es"
directory contains all of the files that the user sees through the file manager. The "My

Deskt op" directory contains everything on the user's Desktop. There are some directories that
the system uses. There are some Desktop.com applications that create their own directories
under the root (this should generally be avoided). To create a directory for an application, call the
get AppDi r ect or y$ method of the Appl i cat i on class.

To get at a file you must know its path. The path is the list of directories, starting at the root, that
need to be traversed to find the file, plus the name of the file, all separated by forward slashes
("/"). To get to the "Me. gi f "file in the "Pi ct ur es" directory in the user's "My Fi | es"
directory, use:

/My Files/Pictures/ Me.gif

29



The DTFileSystem

The DTAPI package that implements the filesystem is called DTFi | eSyst em The

DTFi | eSyst empackage exports many functions, but the two most basic are
DTFi | eSyst em get $ and DTFi | eSyst em put $.

DTFi | eSyst em get $ retrieves a Root Per si st ent Qbj ect from the filesystem
using its path. From the Root Per si st ent Qbj ect , you may access all
Per si st ent Obj ect sin its object group.

For example:

var result = DTFi |l eSystemget$("/ M Files/foo");
if (!'result.success)

{
}

var rpo = result.object;

...error handling code...

DTFi | eSyst em put $ inserts a Root Per si st ent Cbj ect into the filesystem at a
particular path. DTFi | eSyst em put $ is often used after a new

Root Per si st ent Qbj ect is constructed. If DTFi | eSyst em put $ is not used, you
will not be able to retrieve your objects.

For example:

var rpo = new Root Persi stent Qbj ect();
var result = DTFil eSystem put$("/My Files/bar", rpo);
if (!'result.success)

{
}

For more information, and a complete list of functions and methods, see DTFileSystem.

...error handling code...

30



GUI Structure

As this API is designed to create end-user applications, the DTAPI offers a broad set of pre-
defined GUI enabling packages and concepts. These GUI components are arranged to provide
both ease-of-use and expandable functionality to the developer.

31



Components

A component is an object which defines an element of the graphic user interface for an
application. Components may define windows, images, text displays, menus, or any combination
of these elements, and may include both interactive elements and layout constraints. Some of the
more common components are described here, to serve as examples of those available.

Container components are used to combine other components into a single entity, as
experienced by the end-user. The Pane component defines a window in which other components
may be placed. A layout manager may be attached to the Pane, which will arrange the elements
within it relative to the Pane itself. The Pane and all its contained elements are treated as a single
unit by the end-user, and may be moved and resized by simply moving the Pane container. This
and its parent class, Container, are both components which may contain other components,
including different instances of the same class. This feature introduces hierarchy into the
application structure, and is intended to help simply application design.

Text components are used to display and arrange text, and may be interactive. One of the most
common of these is TextLabel, which may be used to place text, and set its location and
alignment. For example:

var textl abel = new DTText Label . Text Label ();

text| abel . set Locati on(10, 10);

text| abel . set Text("Hello World");

text| abel . set Al i gnnment ( DTText Label . Text Label . LEFT) ;
addConponent ()

This will create a text label of width 50, height 25, font color red, text "Hello World" and text
aligned to the left inside the area. The location of this component is set to (10, 10) within the
containing container. TextLabel variations include TextimageLabel, which includes an image with
the text, and TextBox, which allows multiple lines of text.

Image components display an image. To simply display an image, call an instance of ImageArea,
which supports three different modes. The first mode lets you display the image in its natural size,
the second lets you stretch or compress the image to fill the area specified by the size of the
ImageArea. The third allows you to clip a larger image to the size specified.

Components are meant to be used as building blocks in the creation of an application. As such,
they may be combined and re-combined to suit the developers' needs. For example, he Button
component combines image and text in a pre-defined format, which includes an action listener.
The component will automatically change appearance when clicked, mimicking standard button
features. The associated actionListener will emit the appropriate actions when called. This
component may be placed in either a window or a pane component.

32



Layout Managers

Layout Managers are classes whose function is to position the various components in a
container. Layout managers are associated with containers, and each has a defined pattern to lay
out components added to the corresponding pane. Each time a pane is painted or resized, the
doLayout () method of the layout manager is called and the components are laid out. Some
layout managers also control the size of components contained in the associated panes.

A description of each layout manager is given with its class description. Examples for two
common layout managers are given here.

The ArrayLayoutManager stacks all components in an array one after the other in a single row or
column. In the example below, the manager is created with the VERTICAL parameter, which will
cause it to stack the components along the vertical axis. Different layout managers have different
parameters, and are designed for different uses and effects.

To create an ArrayLayoutManager and add it to a container, call:

var al m = DTArrayLayout Manager . ArrayLayout Manager ;
var | m= new al m(al m VERTI CAL) ;

pane. set Layout Manager (I nm;

pane. addConponent (cl);

pane. addConponent (c2);

pane. addConponent (cn);

Some layout managers take a constraint object, which is a means to define all properties needed
to arrange the component. The constraint object is a separate class, an instance of which should
be passed as an argument to the addComponent method of the container. For example, the
Tabl eLayout Manager arranges components in the form of a table, where each
component has a cell position associated with it. The cell position, along with the component
padding, weight, and spans (number of rows or columns that the component spans) are then
specified for each component by setting the properties on an instance of

Tabl eLayout Const r ai nt, and passing that as the second argument of

addConponent ().

To create a Table Layout Manager with component positioning constraints:

33



var | m= new
DTTabl eLayout Manager . Tabl eLayout Manager () ;
pane. set Layout Manager (I nm;
| m set Rows(2);
| m set Col ums(2);
var constraint =
new
DTTabl eLayout Constrai nts. Tabl eLayout Constrai nts()

constrai nt.set RowNunber (0) ;

constrai nt. set Col uymNunber (0);
constraint.set Col umSpan(2);
constraint.set RowSpan(1);

pane. addConponent (cl, constraints);
constraint.setDefaul ts();

constrai nt. set Col umNunber (0);
constraint.set RowNunber (1) ;

pane. addConponent (c2, constraints);
constraint.setDefaul ts();
constraint. set Col uymNunber (1) ;
constraint.set RowNunber (1) ;

pane. addConponent (¢3, constraints);

This will layout the components as shown below.

34

cl
c2 c3



Common windows and dialogs

Window components define the area in which objects appear, and may include Application
Windows, Dialog Windows, Alerts, and input boxes. Window components may be associated with
layout managers and action listeners to define desired GUI elements.

Two of the most commonly used windows are instances of AppW ndow and
Di al ogW ndow. Appwindows are persistent: unless the window is closed, it persists from
one Desktop session to the next. They have a title bar and may be resized.

DialogWindows are similar to AppWindows in that they are always associated with an application,
but differ in dialog windows' specificity. DialogWindows are normally associated with a window
belonging to an application. DialogWindows are not persistent: they do not persist from one
session to another. They are not resizable by the user. (The application and other widgets may
manipulate a dialog's size by calling the relevant methods.) DialogWindows maintain focus. When
a DialogWindow is launched, it stays in front of the other window and retains the focus until it is
closed. The other window cannot be raised to the forefront as long as the DialogWindow is open.

AppWindows and DialogWindows are created and used similarly. To create a dialog window:

var di al og = new DTD al ogW ndow. Di al ogW ndow() ;
di al og. set Locati on(100, 100);

di al og. set Si ze( 200, 250);

dialog.setTitle("This is a dialog");

app. addDi al og(di al og, "dial og_reference");

di al og. set Layout Manager (| ayout _manager) ;

To make commonly used dialogs, such as Alert and Question, easier to use, the DTAPI provides
a wrapper function, which allows these dialogs to be called directly. For instance:

DTAlert.DoAlert$("this is the alert text", app, wn);
or

DTAl ert.DoAlert("this is the alert text", app, wn,
ch)

The first argument is a string representing the text to be displayed in the alert box. The second
argument (optional) is a reference to the Application associated with the alert. The third argument
(optional) is a reference to the window in which the Alert should be centered. If the first (blocking
call) syntax is used, then this call blocks until the user hits the "OK" button on the alert box. If the
second syntax is used and the cb is an instance of Callback, then the Callback gets called
whenever the user hits "OK." If cb is nul | , this is a non-blocking call, and the program
continues without waiting for user input.

35



To create a Question dialog, call:

DTQuesti on. AskQuesti on$

("this is the question", app, wn);
or

DTQuest i on. AskQuesti on
("this is the question", app, win, cb);

Note that the syntax to create both these dialogs is the same; only the return values will differ.
Alert will return only OK, while Question will return Yes, No, or Cancel.

36



Event Handlers and Action Listeners

Listening

Some Components must be able to react to events received in others. For example, a menu bar,
which is a composite Component, must respond to mouse clicks in the text labels that anchor its
pull-down menus. This kind of event distribution can be achieved with event listening. Any
Component can register as an event listener with any other Component. When a Component
receives an event, it passes the event on to all of its event listeners, even when the event has
local significance for the Component receiving it.

It is sometimes more convenient to listen for actions rather than for events. Actions are higher-
level occurrences than events, and are generated by Components rather than by input devices.
Examples of actions include button presses, text value changes, and moves and resizes.

Actions

Actions are generated when a user clicks (Cl i ck) or double-clicks (dbl ¢l i ck)on a
component, or can be created by a component in response to defined keyboard or timed actions.
Any object (any component, application, window, or other object) may listen for actions on any
component. (To identify the component, the developer may also set a string as a label for a

component using the set Act i onLabel method.) Each component can have only one label,
and this label may be overwritten at any time.

A developer can attach any object as an action-listener to a component by calling

addAct i onLi st ener onthe component. The first argument to addAct i onLi st ener
is a reference to the object that will act as a listener. The second argument (optional) is the name
of a method (as a string) defined in the listener that is called when a defined action is performed
on the component. (If the method name is not provided, it is set to act i onPer f or ned by
default.) Each time an action is emitted by a component, this method is called with three
arguments:

obj ect : areference to the component on which the action was performed.
| abel : the label of the component; nul | if the label is not set.

act i on: the name of the action performed on the object (component) generating the
event.

In addition to the actions provided by the system, a component class may define its own actions,
which may be used to communicate information to various listeners. For more information, see
the following methods in DTComponent:

set Act i onLabel (| abel)
addAct i onLi st ener (obj ect, nethod)

37



Events

Events are lower-level occurrences than actions, in that they are generated by a simple mouse or
keyboard event, rather than by a component.

To listen for keyboard events from a component, and respond to them, implement

handl eKeyboar dEvent () . This method is called each time a user types a key on the
keyboard when the focus is on the component. (The concept of focus is explained later in this
chapter.) For more information, see handl eKeyboar dEvent () in DTComponent.

One can also listen for mouse actions (like mouseup, mousedown, etc.) by adding a listener to a
component by calling addMouseLi st ener () . This, like addAct i onLi st ener (),
takes an object (listener) as the first reference, and a name of a method in the listener (as a
string) as an optional second argument. (The default for the second argument is

handl eMbouseEvent .) Methods of listeners are called each time the mouse interacts with
the component, and take only one argument: e€vent . The event argument contains all the
information and reference to the object. For more information, see the following methods in
DTComponent.

addMouselLi st ener (obj ect, net hod)
handl eMouseEvent (event)

Both handl eKeyboar dEvent () and handl eMouseEvent () are propagated up the
container hierarchy. If a component does not respond to an event, then the container containing
the component will receive the event. This event propagates up until a container responds to it, or
the top-level container is reached.

38



Focus

In the DTAPI's mouse-and-keyboard interface, the purpose of focus is to direct keyboard input to
the appropriate Component. Focus is a means of defining the primary, active component on the
screen.

In the Desktop environment, any component can get focus, either when the user clicks on the
component, or because a widget or an application sets the focus on the component by calling
set Focus( conmponent ) on the containing pane. Once in focus, the component will
respond accordingly: its appearance may change if alternate images have been defined for active
and inactive states, and all keyboard events will be routed to it.

Unless otherwise set, every component is focusable by default. To deny a component focus, call
set Focusabl e(f al se).

39



Panes

The Pane class is a subclass of Container that has the ability to manage its children (all
Components) with a concept of focus. At any time, zero or one of a Pane’s focusable children (a
class-level Component property) may have the Pane’s focus. If there is a child in focus, it is only
active if the Pane itself has focus within its parent Pane, and so on all the way up to the Screen,
which is the top-level Pane. In tracing down the Pane/Component containment tree from its root
at the Screen, there is only one path along which Components are active: the active path. The
deepest Component in the active path is called the primary Component, and may be a Pane, or
a non-Pane Component (such as a dialog window). There is always exactly one primary
Component on the Screen. Components (including Panes) always know whether they are active,
and the WindowManager (which manages the Screen) always knows which Component is
primary.

A Pane maintains a stable ordering of its focusable children, called the focus ring. This ordering
is used to define a serial path of user movement among Components. A Pane also maintains a
flag that indicates what to do when the end of the focus ring is reached: cycle around to the
beginning, or ignore the focus advance and allow the parent to handle it. (This is useful for things
such as tab windows and radio button groups.) Focus rings may consist of an arbitrary
interleaving of widgets and nested Panes.

A Pane may have one of its child Components designated as its default focus. The default focus
may be strong or weak. A strong default focus (which may be null) always attempts to take focus
when a Pane becomes active (a previously focused Component may refuse to allow this). A weak
default focus takes focus when a Pane becomes active and has no previously focused
Component.

Inactive Panes remember focus. When a Pane becomes active again, it can reestablish the
active path that existed below it when it was last active. This is useful, for example, in maintaining
independent focus states for separate application windows. The focus remembered by inactive
Panes does not affect event routing.

40



Containers

It is possible to use Containers that are not Panes. Typically, non-Pane Containers are used to
combine multiple Components into a single widget. For example, a scrollbar is a Container
containing three buttons, one of which moves, while the other two are fixed at the ends of the
scrollbar.

In handling focus-related events, containers are treated differently than Panes. Non-Pane
containers and their children act as a single component with regard to refocus events, and
children of non-Pane Containers are never considered active. Components placed in a container
will not receive any actions that deal with focus, and will, instead, pass such actions up the focus
path. If a user clicks on a component inside a container, the keyboard events will go directly to
the container, whereas if the component were contained in a pane, the keyboard events would go
to the individual component.

41



Focus Events

All keyboard events are routed to the primary Component, which may decide either to handle
the event, or pass it up to its parent Pane.

All mouse events are routed to the Component from which they originate. That Component may
decide to treat the event as a refocus event, which causes the Component to become primary if
it is not already active. (While Components may define any mouse event type or types to be
refocus events, the default is to treat only mousedown events as such.) Any mouse event not
treated as a refocus event is a pass-through event, handled normally by the Component.

42



Keyboard Events

When a Component becomes primary, it registers with the WindowManager to receive all
keyboard events. When a keyboard event occurs, it is routed to the primary Component.

When the primary Component receives a keyboard event, it examines the key combination in
order to decide what to do. If the key combination has local significance for the Component, it
handles the event itself; if not, the event is passed up to the Component’s parent Pane, which
then examines the key combination in the same way. The event continues up the active path until
a Pane is reached which ascribes significance to the event, and decides to handle it. If no Pane
along the active path (including the Screen) is interested in the key combination, the event is
discarded.

Note that if multiple Components along the active path attach meaning to the same key
combination, the most deeply nested Component among these, that equal to or closest to the
active component in the chain, will handle events having that key combination. For example, a
dialog box may assign the same meaning to the Enter key as pressing the OK button. If that
dialog box contains a multi-line text input field, the more local meaning, "new line," will be
attached to the Enter key when the focus is in the text input field.

43



Focus-Advance Events

Focus-advance events use the focus ring, allowing users to advance in order through the
Components in a Pane, without using the mouse. For almost all situations, a Pane subclass
should interpret a pair of related key combinations (such as Tab and Shift+Tab) as focus-advance
keys, one for the forward, and one for the reverse direction.

A Pane can operate its focus ring in one of two modes: circular or non-circular. In circular mode,
advancing in either direction beyond the end of the focus ring loops the focus back around to the
Component at the other end. In non-circular mode, attempting to advance beyond the end of the
focus ring causes a Pane to ignore the focus-advance event, and pass it up to its parent Pane to
handle. This has the effect of "jumping" focus out of a Pane to the Pane’s parent. This can be
useful, for example, in implementing a control-group container (such as a radio-button group) as
a Pane. The controls in the group will appear to the user to be part of the parent Pane’s focus
ring.

44



Refocus Events

When an inactive Component receives a mouse event, it examines the event type and decides
whether the event is a refocus event. The decision is made according to a dynamic Component
property that indicates what event type or types, if any, are to be treated as refocus events for
that Component. The default for this property defines only the mousedown event as a refocus
event.

If a received event is not a refocus event, the receiving Component ignores the event. If the event
is a refocus event, the Component passes the event to its parent Container. That Container may
or may not be a Pane.

If a Pane receiving a refocus event from a child Component is not active, it routes the event up to
its parent Container, and so on up to the Screen, which is by definition always active. Eventually,
through this process, an active Pane will be found; called the pivot Pane. The pivot Pane is the
deepest common ancestor of both the old and new active Components in the Component
containment tree.

Once the pivot Pane has been found, it asks its focused Component to lose focus. That
Component may perform an internal consistency check to ensure that no user-supplied data is
invalid, refusing to give up the focus if this is the case. If the Component being asked to lose
focus is a Pane, it skips the consistency check and informs its own focused Component that it will
be losing active status (although keeping focus). The no-longer-active message is propagated
down along the active path to the primary Component.

If and when the pivot Pane successfully gets its previously focused Component to lose focus, it
then grants focus to the child Component that routed the refocus event up to it, making that
Component active. If the newly focused Component is a widget, it becomes primary. If it is a
Pane, it repeats the same logic as the pivot Pane with respect to taking focus away from its
currently focused child Component. Again, a focused Component in a newly activated Pane has
the opportunity to refuse to relinquish focus, in which case it remains active, and if it is itself a
Pane, the active status propagates all the way down the focus chain below it. If, on the other
hand, the currently focused child of the newly active Pane agrees to give up focus, then focus is
granted to the child Component that routed the refocus event up to that Pane, making the child
active. The propagation of active status then repeats down the chain until either the Component
where the refocus event originated becomes active (and primary), or the activation chain is
sidetracked somewhere along the way by a refusal to give up focus.

If and when the originating Component becomes primary, it also handles the event that caused
the refocus to occur. For example, if a mousedown event causes a focus change, mousedown is
delivered to the Component where the event occurred once that Component has become
primary. If the Component that becomes primary is a non-Pane Container, and the event
originated in one of its child Components, the Container passes the event back down to the
originating child to handle. If activation is sidetracked somewhere by a refusal to give up focus,
the refocus event is discarded. This ensures that mouse events are only delivered to the
Components where they occur.

In summary, a refocus event causes an up-down-down chain of messages. The event moves up
the containment tree from the originating Component until it reaches the pivot Pane. Deactivation
is then propagated down from the pivot Pane along the active path to the then-primary
Component. Activation and focus granting is then propagated down from the pivot Pane to the
originator.

45



Programmatic Focus Changes

It is possible to set the focus within any Pane programmatically. If the Pane for which the focus is
being set has a focused Component, that Component may refuse to give up focus. This refusal
can be detected by the code attempting to set the focus. If the Pane for which the focus is being
set is active, the previously focused Component, if any, is encouraged to display a warning dialog
if it is refusing to give up focus.

46



Application Modes

Launching Applications

There are several ways to launch an application. Applications may be launched directly by
double-clicking an application icon on the Desktop, or by selecting the application from the "My
Apps" menu. Both of these methods call

DTAppl i cati onManager . OQpenApp( appnane)

where the appnamne is the name of the application's Package. Applications may also be
launched indirectly by launching a file which is associated with an application.

Launching a File

Applications can be launched indirectly by double-clicking a file in the File Manager, which
launches the application associated with the file in the system's Type Registry. The Type Registry
maintains a mapping between various file types and the applications that are capable of
launching them. When launching a file the function

DTAppl i cati onManager . OpenFi |l e(fil epat h)

is called, with f i | epat h the path to the file to open.

Single Instance

By default, all applications enforce a single instance rule. If a user tries to relaunch an open
application, the application window of the first instance will be displayed instead of relaunching
the same application. This default allows the application to determine how to handle multiple
application windows and files.

If the application is directly launched and an instance already exists, then
DTAppl i cati onManager . OQpenApp() will call its

cal | I nst anceHandl er ( si gnal ) method with Si gnal defined as
openapp_si ngl e_i nst ance.

If a file is being launched and an instance already exists, then

DTAppl i cati onManager . OpenFi | e() will call its

cal | I nst anceHandl er ( si gnal, rpo),wheresignal is
openfil e_single_instance,andr po is areference to the file object.

47



Multiple Instances

Multiple instances of an application may be used to simplify applications. A single instance
typically can display only one file at a time. By enabling multiple instances, the application logic is
simpler than supporting multiple files in a single application instance.

To override the default Single Instance behavior for an application, the application's constructor
needs to define a property named SI NGLE | NSTANCE to be false. For example:

functi on DeskPadBase()

{
this. Application();
thi s. SINGLE_| NSTANCE = fal se;

}
MakeCd ass(DeskPadBase, DTDeskPadBase);
DeskPadBase. | nherit Fron{ DTAppl i cati on. Appl i cation);

DeskPad inherits from a class called DeskPadBase. Its constructor function sets the

SI NGLE_| NSTANCE property to f al se to indicate that more than one instance of the
application should be allowed.

48



Application Data Types

There are five general types of data that exist in an application: application object properties, the
state object, the preference object, files in the filesystem, and the hints object. Data that is put in
an application should go into one of the five general types.

Application data is divided into these types to allow the system to optimize data management in
an application framework. Different types of data have different lifetimes in an application. The
application framework manages when application data is no longer needed, and does garbage
collection. Assigning data to different data types helps structure the design of an application.

The application object stores the most volatile application data properties, and is where transient
data should be stored, such as the current width and height of an application window. Application
properties may be set and changed using the t hi S pointer in the application.

The state object is designed to store persistent data across user sessions. This object stores data
that may be retrieved when an application is reopened after having been closed. For example, a
count may be made each time an application is started and kept in the state object, to determine
the number of times the application has been executed. This object is accessed through the
DTAppl i cati on. get St at eCbj ect () method.

The preference object stores persistent data that concerns the configuration of an application. For
instance, a telnet client application would store the last host and port number to which the client
connected in the preference object. This object may be accessed through the

DTAppl i cati on. get Pref s$() method.

A file in a user’s filesystem may be used to store data required by the user to interact with other
applications or users. This data is application specific, and may be a text file, a GIF picture, or
any other appropriate file type. To access files, use the DTFileSystem API. (See DTFileSystem
for details.)

Hints are the final type of data used in an application. Hints are tied to files, and are meant to tell
how an application should interact with a file. A file's payload type might be stored in a hints file,
indicating whether it is a binary or text file. If binary, it can specify a mime type for the file, which
the application will use to determine what to do with the file. There are no standard formats for a
hints object. To access the hints object, use the DTAppl i cat i on. get Hi nt s$(r po) ,

where I PO belongs to the file in question.

Data Name Access Lifetime Scope

App Object this.foo Session Instance

State Object DTApplication.getStateObject() Session Instance

Prefs Object DTApplication.getPrefs$() Account Life User+app

Files DTFileSystem API User Defined User+filesystem
Hints DTApplication.getHints$() User Defined User+app+file
Definitions:

Session: the time that the user is logged on

Account Life: the time that the user account exists in the system
User Defined: determined by the user’s actions

Instance: a running application

49



Writing an Application

This chapter describes Devtool, Desktop.com's developer tool, and outlines the tools available
and steps necessary to develop an application for Desktop.com.

Submitting Apps to Desktop

To submit an application for inclusion on the Desktop.com website, please send an email
describing the application to: devapps@desktop.com.

50



Devtool

Devtool is Desktop.com's developer tool. It provides a unified interface for functions needed to
edit and test an application online. Devtool provides the ability to:

« upload and download code to your account

« compile JavaScript for execution under the Desktop environment
< execute application code

e assemble application projects consisting of multiple files

¢ "touch-up" edit code on-line

« view debugging output from apps

< access the console, Desktop's command-line interface

Devtool may be accessed from the My Apps | Dev Tools | Devtool pull-down menu item on your
Devtop account.

Devtool's interface consists of an area for application debugging output, an area for output from
the code processor, a menubar, and a toolbar that provides access to its most commonly used
functions.

Devtool also includes a simple text editor, Edwin, that may be launched by creating a new file or
opening an old file. Multiple editors may be open at any time.

All open files that are valid Desktop packages become part of your project. Typically, your
projects will consist of only a few packages at most, one of which will be your application
package. The others are likely to be subclasses built in conjunction with the application. Save
your project from the Project | Save pull-down menu inside Devtool, or by clicking on the save-
project button on the toolbar.

51



Editing Code

While developers need a full-featured text editor to write applications and make major changes,
Devtool provides the means to make quick fix modifications to code on-line. The ability to edit on-
line allows developers to debug without uploading and downloading each time a fix is necessary.
We suggest that you edit code locally, then upload it to your Devtop account when you're ready to
try it out.

Images and HTML

To incorporate images and HTML in your applications, store files in your filesystem, and
reference them using the path prefix, "/cgi-bin/getfile/." For example, for an image called "frog.gif"
in the directory named "/My Files/images," reference the image using

/cgi-bin/getfile/My%20Files/images/frog.gif

(Note that it is necessary to escape any whitespace characters with "%20.")

52



Uploading and Downloading Code

To upload code, login and launch Devtop, then select File | Upload, or click on the file-upload
button in the toolbar. The file-upload browser will appear, prompting you for the path from which
to fetch the code locally, and to which to store the code on your Devtop account. The uploaded
file will automatically open in a new editor window (Edwin) after it has been uploaded and saved.

You may also upload files using the Desktop My Files pull-down menu, or File Manager, without
launching Devtool. These files may be loaded into Devtool by selecting File | Open from the pull-
down menu in Devtool, or by clicking on the open-file button on the toolbar.

(Note that a project may consist of files placed in multiple directories, allowing you to organize
files however you like.)

If you make changes to your application online, you may want to download the modified code to
keep your local copy up-to-date. To download files individually from Edwin, select File |
Download, or click on the file-download button on the toolbar. You may also download files using
the Desktop File pull-down menu or File Manager, without launching Devtool.

53



Compiling

Devtool takes your application code, parses it for errors, and formats it for the Desktop
environment. It reports syntax errors, undeclared symbols, and unused symbols. The changes it
makes include stripping whitespace and comments, translating blocking methods, and renaming
identifiers.

When your application code is loaded in Edwin and ready to be compiled, select Tools | Compile
from Devtool's pull-down menu, or click on the Compile toolbar button. Devtool will begin
processing your code, and the results will appear in the left-hand or upper section of the Devtool
interface. If successful, Devtool will write out a compiled version of your code as a ".ojs" file: the
file that is loaded when you run an application.

(Selecting Tools | Compile and Run will compile the project, then launch the application in the
Devtop window.)

54



Debugging

Devtool provides a simple debugging interface. The secondary window of the application (left-
hand or bottom section of the interface) supports text output from your applications.

To generate output from an application in the Devtool debugger, call your application's built-in
debug() method and pass it the text you would like to see as output. For example,

thi s. debug("hello world!");
will send the text "hello world!" to Devtool's debug window.

We recommend that you use Microsoft's Visual Studio and Netscape's Debugger in conjunction
with Devtool. These tools provide watch, breakpoint, immediate execution, and other useful
features. For more information, see http://msdn.microsoft.com/vstudio/ and
http://developer.netscape.com:80/docs/manuals/jsdebug/index.htm, respectively.

55



The Console

The Console is Devtop's command-line interface, which allows you to manipulate files in your
filesystem, run applications, execute JavaScript commands, and more. To launch the Console,
select My Apps | Dev Tools | Console from the Devtop menu, or New Console from the View
menu in Devtool. Type "help" at the command line to get started.

56



API| Reference Manual

This Desktop API Reference Manual provides descriptions and definitions for all DTAPI
packages, classes, methods and functions available to developers.

The DTAPI is designed to be used in conjunction with the Developers' Guide. While the DTAPI
serves as a reference manual, the Developers' Guide covers overriding principles and
procedures used in implementing the DTAPI. Both manuals often make reference to related
information in the other.

57



Desktop.com Packages

Each core Desktop.com package has a nhame that begins with the prefix "DT." Each package
defines an interface consisting of classes that may be instantiated, and functions that may be
called, which are accessed as properties of the package. For example:

var button = new DTButton. Button(); (class instantiation)
but t on. set Text (user nane) ; (method call)
var usernane = DTUser Dat a. get Logi n(); (function call)

Each class in a package defines a set of methods that may be called on objects of that class. As
in most object-oriented environments, classes inherit the methods defined by their superclasses,
except where they override such methods. Each class has a special method called the

constructor that serves to instantiate the class. The class instantiation line in the example above
shows a call to the But t on() constructor, which instantiates and returns a new Button object.

There are a few classes and functions that are global symbols, meaning that they may be
referenced without the package qualifier. For instance, all of the functions in DTObjectFramework
are global symbols, therefore the call

if (1sA(object, "Button"))

is exactly equivalent to

if (DTQhj ect Framewor k. | sA(obj ect, "Button"))

In order to write a Desktop.com application, you must implement a package of your own. To
define and implement an application package, see the chapter "Developer Defined Packages."

58



Class Hierarchy

The DTAPI classes are arranged in a hierarchical structure, which is shown in the chart below.

Their descriptions are arranged alphabetically in this manual, for easy reference.

DTObjectFramework.DTObject

+ DTApplication.Application

+

DTCallback.Callback
+ DTNamedCallback.NamedCallback

DTContent.Content
+ DTComponent.Component
+ DTContainer.Container
+ DTBasicButton.BasicButton

+

DTButton.Button

+ DTCheckBox.CheckBox
+ DTMenu.Menu

+ DTMenuBar.MenuBar
+ DTPane.Pane

+

+
+
+
+
+
I
I
I
I
+
+

DTBorderedRadioButtonGroup.BorderedRadioButtonGroup
DTDropDownComboBox.DropDownComboBox
DTHTMLBrowser.HTMLBrowser
DTLabelledTextBox.LabelledTextBox
DTRadioButtonGroup.RadioButtonGroup
DTScrollPane.ScrollPane
+ DTlconsView.lconsView
+ DTListBox.ListBox
+ DTScrollingTextBox.ScrollingTextBox
+ DTTextTreeView.TextTreeView
DTTabView.TabView
DTWindow.Window
+ DTBorderedWindow.BorderedWindow
+ DTAppWindow.AppWindow
+ DTDialogWindow.DialogWindow
+ DTReusableDialog.ReusableDialog (private)
| + DTAlert.Alert
+ DTTransientDialogWindow.TransientDialogWindow
+ DTSlideDialog.SlideDialog

+ DTProgressBar.ProgressBar
+ DTRectangle.Rectangle

+ DTScrollBar.ScrollBar

+ DTSlider.Slider

+

DTIncrSlider.IncrSlider

59



(continued from

+

+

+ 4+ — + + — 4+ + + +

DTContainer.Container)

DTDetailsRow.DetailsRow
DTEventGrabber.EventGrabber
DTHTMLBox.HTMLBox
DTImageArea.ImageArea

+ DTImageButton.ImageButton (on Internet Explorer)
DTImageButton.ImageButton (on Netscape Navigator)
DTNativeComponent.NativeComponent

+ DTNativeTextInputBox.NativeTextinputBox
DTTextBox.TextBox

+ DTLinkArea.LinkArea

+ DTTextlmageLabel. TextimageLabel

+ DTTextLabel.TextLabel
DTTextInputBox.TextinputBox
DTTextinputBox2.TextinputBox2

+ DTWrappingTextBox.WrappingTextBox

DTFileUpload.FileUpload

+ DTFontProber.FontMetrics

+

+

DTLayoutManager.LayoutManager
+ DTArrayLayoutManager.ArrayLayoutManager
+ DTAttachmentLayoutManager.AttachmentLayoutManager

+

+ 4+ +

DTColumnLayoutManager.ColumnLayoutManager
DTFlowLayoutManager.FlowLayoutManager
DTGridLayoutManager.GridLayoutManager
DTTableLayoutManager.TableLayoutManager

DTObjectStore.PersistentObject
+ DTApplicationStateObject.ApplicationStateObject
+ DTFileSharing.AccessControlList
+ DTObjectStore.RootPersistentObject

|+
|+

DTApplicationPrefsObject.ApplicationPrefsObject
DTBookmarks.BookmarkRecord

+ DTPersistentArray.PersistentArray

+ DTQueue.Queue

+ DTRendezvous.Rendezvous
+ DTStyle.Style

+ DTTimer.Timer

60



DTObjectFramework

The DTObjectFramework package defines the Desktop.com object framework, an extension of
the object-oriented capabilities of JavaScript.

Classes
DTObject

DTObiject is the root base class for all DTAPI classes. It has no special properties or methods.

All developer-defined classes should be defined as inheriting from (at least) DTObject.

Functions

The DTObjectFramework package defines three kinds of functions. The first kind are ordinary
functions, and are all global symbols. These include MakeC ass(), TypeO (), and

I SA() .

The second kind are invoked as methods of classes (technically, as methods of class constructor
functions). This is in contrast to ordinary methods, which are invoked on objects rather than on

classes. These include MakeMet hod() , Set Def aul t (), MakeConst ant (), and
| nheritFron().

The third kind are invoked as methods of packages (technically, as methods of package
functions). Expor t () is the only function of this kind.

Export (f, function_nane)
Makes the function f visible as a property of the package on which Export () is being
invoked. f is specified by reference, and may be either an ordinary function or a class

constructor function. It is never necessary to export class methods, since they are
invoked through objects rather than packages.

A package should only export those classes and functions that are part of the package's
public API. Any classes and functions used only internally within the package should not
be exported.

If a string is supplied for f unct i on_namne, it will be used as the name of the package
property that references f . Otherwise, the name of the property will be taken from the
name of f (the usual case).

| nherit From( super cl ass)
Establishes the superclass of the class on which | nher it Fr on() is being invoked.
super cl ass is a reference to the constructor function of the desired superclass.

61



| sA(o, class_nane)
Returns t r ue if 0 is an instance of the class whose name is cl ass_nane;f al se if
not. c| ass_nare may name a DTAPI class or a built-in JavaScript class. Note that
instances of a subclass of Cl ass_nane are also considered instances of
cl ass_nane.

MakeC ass(f, pkQ)
Makes the constructor function f into a DTAPI class within the package pkg. Both f

and pkg are specified by reference.

MakeConst ant (property, val ue)
Establishes a class property with the name pr oper t y and the given val ue for the

class on which MakeConst ant () is being invoked. A class property may be
accessed later with the syntax classname.property. Note that a class property differs from
a default property in that it is never visible as a property of instances of the class, only as
a property of the class itself.

MakeMet hod(f, method_nane)
Makes f , a function specified by reference, into a method of the class on which

MakeMet hod() is being invoked.

If a string is supplied for met hod_nare, it will be used as the name of the method. If
not, the name of the method will be taken from the name of f (the usual case). If

nmet hod_nane is not supplied and f has a name of the form
classname_methodname, where classname matches the name of the class on which
MakeMet hod() is being invoked, the method's name will be methodname rather than

the full name of f .

Set Def aul t (property, val ue)
Establishes a default property with the name pr oper t y and the given val ue for the
class on which Set Def aul t () is being invoked. This property will become a property
of every instance of the class. The value of pr oper t y may be overridden in any
instance by assigning a different value to it. Overriding the value of pr oper t y for an
instance will not affect the default value.

val ue may be of any type. If val ue is a reference type (references to objects, arrays,
functions, etc.), the value of pr oper t y will refer to the same object in all instances of
the class. If the object is modified, it will appear modified for all instances of the class.

TypeO (0)
Returns a string that indicates the type of O. If O is an instance of any DTAPI class or
built-in JavaScript class, TypeOf () returns its class name. Otherwise, TypeCF ()
returns the basic type of 0, as per the t ypeof operator.

62



DTAlert

The DTAlert package defines the DOAl er t $() function

Classes
None.

Functions

DoAl ert $(text, where)
Displays an alert dialog window with the specified t ext and an OK button. wher e
(optional) specifies a reference to an object (either an Application or a Window) relative to
which the dialog is to be centered and made modal. If wher e is omitted, the dialog will
be centered on the screen and made system-modal. As window centering and modality is
the most common, pass a Window reference for Wher € unless there is some reason not
to.

If DOAl er t $() is called as a blocking function, it will not return until the user clicks the
OK button in the dialog that is displayed.

DoAl ert $() is preferable to the JavaScript al ert () because it is implemented
within the Desktop.com environment, which allows more control over appearance and
provides the user with feedback that clearly comes from within Desktop.com.

Dialog windows are resized to fit the text. t €Xt is wrapped where appropriate, may
include HTML tags, and will translate "\ N" appearing int €xt as a line break.

63



DTApplication

The DTApplication package defines the Application class.

Classes

Application

The abstract base class for all applications. To implement a Desktop.com application, create a

subclass of the Application class.
Inherits from DTObjectFramework.DTObject.

Constructor

None. The ApplicationManager automatically instantiates Application objects: they should

never be instantiated directly.

Service methods

(These methods may be called as properties of t hi S by subclasses.)

addDialog(dialog, tag)
addWindow(win, tag)
debug(output)

exit()
getAppDirectory$()
getAppArguments()
getDialog(tag)
getDialogs()

Overridable methods

getPrefs$()
getStateObject()
getWindow(tag)
getWindows()
removeDialog(tag)
removeWindow(arg)
setStateObject()

(These methods may be implemented by subclasses.)

begin$()

getDefaultPrefsObject()

go$()

handleWindowAction(object, label, action)
handleWindowClose$(win)

addDi al og(di al og, tag)

restoreAfter$()
restoreBefore$()
restoreDuring$()
startup$(rpo)

Draws a dialog object and adds it to the list of dialogs associated with the application
instance. di al 0g is a reference to a DialogWindow object that has been appropriately
initialized. t ag (optional) is a string, to be used as a key to refer to the dialog being
added. If omitted, a tag unique within the application instance will be automatically
generated and given as the return value from addDi al og() . (get Tag() may be

called on any DialogWindow object.)

64



All dialogs displayed using addDi al og() are application-modal, which means they
must be dismissed before the user may interact with the application displaying them.

addW ndow(wi n, tag)
Draws a Window object and adds it to the list of windows associated with the application
instance. Wi N is a reference to a Window object (usually a DTAppWindow.AppWindow)
that has been appropriately initialized. t ag (optional) is a string to be used as a key to
refer to the window being added. If omitted, a tag unique within the application instance
will be automatically generated and given as the return value from addW ndow( ) .
(get Tag() may be called on any Window object.)

Calling addW ndow( ) causes both steps of window initialization, chrome and interior
drawing, to occur, and may be called at any time. When addW ndow( ) is called from
within the st ar t up$() method, chrome drawing occurs immediately; interior drawing
occurs after st ar t up$() returns. If addW ndow( ) is called from somewhere other
than st art up$( ) , and both window drawing steps should be completed before
continuing, call addW ndow$(wi n, tag) (note the blocking syntax).

begi n$()
Called as the first hook method in both the startup and restore initialization sequences.
This method provides an easy way to write code common to both sequences.

debug( out put)
Checks for the existence of Devtool, and passes along the application reference.
out put is a string which will be displayed in Devtool's debug window.

exit()
Unconditionally destroys the application instance and all its windows.

get AppAr gunent s()
Returns the startup arguments, if any. (See the DTApplicationManager functions:
OpenAppWithArguments, and OpenFileWithArguments, for more information.)

get AppDirect ory$()
Finds or creates a directory unique to this application class and returns its path. This
directory is available only to the application class, and provides a location to store
application-specific data that should not be visible to users. The return value from

get AppDi rect or y$() is an object with properties SUCCESS, €r I Of , and
pat h.ifsuccess st rue, then pat h is the path to the directory. If SUCCESS is
f al se, then err or is an error code that may be compared against the values in
DTAppl i cati on. ERRNQO, or turned into an error message using
DTApplication.getErrorString().

get Def aul t Pref sCbj ect ()
Provides a way to specify default preferences for the application class. If implemented,
this method is called when get Pr ef s$() is called and cannot find an existing
ApplicationPrefsObject in the filesystem. Should return an instance of an
ApplicationPrefsObject (or a subclass), or nul | to indicate failure.

65



get D al og(tag)
Returns a reference to the DialogWindow object associated with t ag; nul | if no dialog
with the given tag exists.

get Di al ogs()
Returns an array of all DialogWindow objects associated with the application instance.

get Prefs$()
Obtains and returns a reference to the ApplicationPrefsObject associated with the
application class. To obtain this object, get Pr ef s$() first checks the filesystem, and
returns an existing ApplicationPrefsObject, if available. Next, it looks in the application
class, and returns the object returned by the get Def aul t Pr ef sQbj ect ()
method, if that method is implemented. If neither search finds an ApplicationPrefsObject,
get Pref s$() returns an empty ApplicationPrefsObject.

If a new ApplicationPrefsObject is created, either by
get Def aul t Pr ef sCbj ect () or by default, it is put into the filesystem and
returned by the next call to get Pref s$() .

Returns an object with properties SUCCESS, err or , exi sti ng, and obj ect . If
success istrue, obj ect is areference to the ApplicationPrefsObject, and

exi stingistrueifthe obj ect was found in the filesystem, and f al se if the
obj ect was created. If success isf al se, error is an error code that may be
compared against the values in DTAppl i cat i on. ERRNOor turned into an error
message using DTAppl i cati on.getErrorString().

get St at e(bj ect ()
Returns a reference to the ApplicationStateObject associated with the application
instance. If called and no ApplicationStateObject exists for the application instance, an
empty ApplicationStateObject is created and returned.

get W ndow( t ag)
Returns a reference to the Window object associated with t ag; nul | if no window with
the given tag exists.

get W ndows()
Returns an array of all Window objects associated with the application instance.

go$()
Called as the last hook method in both the startup and restore initialization sequences.
This method provides an easy way to write code common to both sequences.

handl eW ndowAct i on(obj ect, |abel, action)
If implemented, this method is called when an action is emitted from any Window object
associated with the application instance. This method acts as an action listener for all
Window objects associated with the application, making it unnecessary to add action
listeners to the Window objects manually. 0bj ect defines the object; | abel is its

66



label defined with set Act i onLabel () ;and act i on is the action performed. (See
DTComponent addAct i onLi st ener () andset Acti onLabel ().

handl eW ndowCl ose$(wi n)
If implemented, this method is called when a user clicks the "X" button at the window's
top right corner to close it. If t r Ue is returned, the window is destroyed; if f al se, no
change occurs. The return value may be conditionalized as desired, including asking the
user for confirmation using DTQuest i on. AskQuesti on$() . If
handl eW ndowCl ose$() is not overridden, the default implementation returns
t rue, and calls exi t () if the window being closed is the last window associated with
the application instance.

renmoveDi al og(tag)
Destroys the dialog identified by t ag.

removeW ndow ar g)
Destroys the window identified by ar g, which may be either a reference to a Window
object or a window tag string.

restoreAfter$()
A hook method called after all window drawing in the restore sequence.

rest or eBef or e$()
A hook method called before all window drawing in the restore sequence.

restorebDuring$()
A hook method called between window chrome drawing and window interior drawing in
the restore sequence.

set St at e(bj ect (obj)
Sets a reference to the ApplicationStateObject associated with the application instance.

startup$(rpo)
The hook method called during the startup sequence. St art up$() is the only hook
method required to be implemented.

If the application is being launched with a file, a reference to the RPO that that file points

to is supplied in the r PO parameter. Otherwise I PO is Nul | . Applications that do not
support file launching may ignore I pO.

Functions

getErrorString(errNum
Converts an error number returned by an Application method into an error message
string that may be displayed to users.

67



DTApplicationManager

The DTApplicationManager package defines the ApplicationManager class.

Classes
None.

Functions

OpenApp$( appnane)
Opens a new instance of an application. appnaie is a string that specifies the name of
the package containing the Application subclass to be instantiated. The name of the
Application subclass within this package must match the package name, minus the "App"
or "DT" prefix.

Returns an object with properties SUCCESS, appobj , and er r no. If success is
t rue, appobj is areference to the AppObj ect created by the Application's
constructor function. If success isf al se, er r no is an error code that may be
compared against the values in DTAppl i cat i on. ERRNOor turned into an error
message using DTAppl i cati on. getError String().

OpenAppW t hAr gunent s$( appnane, appar gs)
Opens a new instance of an application, and supplies startup arguments to the
application instance. appnane is a string that specifies the name of the package
containing the Application subclass to be instantiated. appar gs is a reference to an
object that contains application-specific information. The application instance may
retrieve this information using DTApplication.Application.getAppArguments().

Returns an object with properties SUCCeSS, appobj , and er r no. If success is
t rue, appobj is areference to the AppObj ect created by the Application's
constructor function. If success isf al se, er r no is an error code that may be
compared against the values in DTAppl i cat i on. ERRNOor turned into an error
message using DTAppl i cati on.getError String().

OpenFi | e$( pat h)
Opens a file by launching an application and supplying the specified file's RPO in the
r po parameter to DTAppl i cati on. Appl i cation. startup$().path
specifies the full path to the file to open. The application to be instantiated is chosen
automatically based on the type of the RPO contained by the specified file.

Returns an object with properties SUCCESS, appobj , r po, and er r no. If
success istrue, appobj is areference to the AppCbj ect created by the
Application's constructor function, and I PO is the RPO object reference of the given
path. If success isf al se, er r no is an error code that may be compared against

68



the values in DTAppl i cat i on. ERRNOor turned into an error message using
DTApplication.getErrorString().

OpenFi | eWt hArgunment s$( pat h, appnane, appargs)
Opens a file by launching the appropriate application with the optional parameters
appnane and appar gs, either of which may be specified as nul | . pat h
(required) specifies the full path to the file to open. appnamne (optional) is a string that
specifies the name of the package containing the Application subclass to be instantiated.
The name of the Application subclass within this package must match the package name,
minus the "App" or "DT" prefix. If appnamne is omitted, the application to be instantiated
is chosen automatically based on the type of the RPO contained by the specified file.
appar gs (optional) is a reference to an object that contains application-specific
information. The application instance may retrieve this information using
DTApplication.Application.getAppArguments().

Returns an object with properties SUCCESS, appobj , r po, and er r no. If
success istrue, appobj is areference to the AppQbj ect created by the
Application's constructor function, and I PO is the RPO object reference of the given
path. If success isf al se, er r no is an error code that may be compared against
the values in DTAppl i cat i on. ERRNOor turned into an error message using
DTApplication.getErrorString().

69



DTApplicationPrefsObject

The DTApplicationPrefsObject package defines the ApplicationPrefsObject class.

Classes

ApplicationPrefsObject

Defines an ApplicationPrefsObject, which is a PersistentObject with an infinite lifetime that is
shared among all instances of the application class for a given user. As such, it is a place to store
data that affects the behavior of the application, but varies from user to user.

An ApplicationPrefsObject should not be instantiated directly. Instead, the application base class
(DTAppl i cati on. Appl i cat i on) instantiates an ApplicationPrefsObject when the
get Pref s$() method is called. If an application has its own subclass of
ApplicationPrefsObject to manage preferences, an overridden version of
Appl i cation. get Def aul t Pref sCbj ect () should instantiate, initialize, and return
it.
Inherits from DTObjectStore.RootPersistentObject.
Constructor
ApplicationPrefsObject(argl, arg2)
ar gl (optional) defines the user ID, and ar g2 (optional) the ID for this
ApplicationPrefsObject.

Methods
None.

Functions
None.

70



DTApplicationStateObject

The DTApplicationStateObject package defines the ApplicationStateObject class.

Classes

ApplicationStateObject

Defines an ApplicationStateObject, which is a PersistentObject whose lifetime and scope are
exactly those of the application instance. It is a place to store any persistent data required to
allow the application to retain state across multiple login sessions.

An ApplicationStateObject should not be instantiated directly. Instead, the application base class
(DTAppl i cati on. Appl i cat i on) instantiates an ApplicationStateObject when the

get St at eCbj ect () method is called. If an application has its own subclass of
ApplicationStateObject to manage states, it should apply an instance of that subclass using

DTAppl i cation. Application. setStateCbject().

Inherits from DTObjectStore.PersistentObject.

Constructor

ApplicationStateChject(argl, arg2)
ar g1 (optional) defines the user ID, and ar g2 (optional) the ID for this
ApplicationStateObject.

Methods
None.

Functions
None.

71



DTAppWindow

The DTAppWindow package defines the AppWindow class: the default window class used by
Desktop applications.

Classes

AppWindow

Represents an application window, with title bar, resize handles and an inner pane in which
applications display their interface.

An application window is made up of two elements: the frame around the outside, and the
application area within this frame. Most methods called on an AppWindow object apply to the
inside area. A few methods, however, apply to the entire window. The part to which a given
method applies is generally intuitive.

Inherits from DTBorderedWindow.BorderedWindow.

Constructor

AppW ndow()

Actions

None.

Methods

close() setMaxHeight(height)
getApp() setMaxWidth(width)
getLocation() setMenuBar(bool)
getMenuBar() setMinHeight(height)
getTag() setMinWidth(width)
iconize() setResizable(resizable)
maximize() setRestoreMethod(method)
setBackgroundColor(color) setSkipTaskBar(bool)
setDrawMethod(method) setTitle(title)
setLocation(x, y) setVisible(isVisible)

cl ose()

Closes the window.

get App()

Returns a reference to the Application object associated with the window.

get Locati on()
Returns the window's pixel coordinate position on the screen. Applies to the entire
window, no simply the inside application area.

72



get MenuBar ()

Returns a reference to the menu bar placed in the window.

get Tag()

Returns the unique tag string for the window, which is used to differentiate between
multiple windows owned by an application.

i coni ze()
Iconizes the window, hiding it until its taskbar entry is clicked.

maxi m ze()
Maximizes the window size to the size of the desktop.

set Backgr oundCol or (col or)
Sets the background color for the inner portion of the window. COl Or is defined as a 6-
digit hex string which begins with a "#" character, such as "#00CC99."

set Dr awivet hod( net hod)
Sets the method used to define the inner contents of the window. met hod is a string
that specifies the name of a method in the application object associated with the window.
When this method is called, it will receive one argument, which is a reference to the
AppWindow object within which components should be added.

set Location(x, Yy)
Sets the window's pixel coordinate position on the screen. Applies to the entire window,
not simply the inside application area.

set MaxHei ght ( hei ght)
Sets the maximum height for the window in pixels. Users will not be able to size the
window beyond this height. By default, a window has no maximum height.

set MaxW dt h(wi dt h)

Sets the maximum width for the window in pixels. Users will not be able to size the
window beyond this width. By default, a window has no maximum width.

set MenuBar ( bool )
Sets whether the window should provide space for an application menu bar. t r ue if
space should be provided; f al se if not.

set M nHei ght ( hei ght)
Sets the minimum height for the window in pixels. Users will not be able to size the
window below this height. Default is 10 pixels.

set M nW dt h( wi dt h)

Sets the minimum width for the window in pixels. Users will not be able to size the
window below this width. Default is 10 pixels.

73



set Resi zabl e(resi zabl e)
Specifies whether the user is able to resize the application window by dragging one of the
sections of the bottom frame. t r ue (default) allows the window to be resized; f al se
prevents resizing.

set Rest or eMet hod( net hod)
Sets the method used to define the window's contents during the restore process. If
set Rest or eMet hod() is not called, the method set by set Dr awivet hod() is
used at both startup and restore.

set Ski pTaskBar ( bool )
Indicates whether an entry should be placed in the Desktop task bar for this window.
Default is f al se (to include the entry).

setTitle(title)
Setsthe t i t | e string to be displayed for the window in the title bar.

set Vi si bl e(i sVisible)

Sets whether the window is visible. Defaultist r ue.

Functions
None.

74



DTArray

The DTArray package defines utility functions for JavaScript arrays. Some of the functions in the
DTArray package are redundant with built-in methods of JavaScript arrays, but the versions here
are more portable because IE does not support all of the Array methods natively.

Classes
None.

Functions

All functions in DTArray are global symbols (see Desktop.com Packages). They may be called
without the DTArray qualifier.

contains(a, e)
Returns whether array a contains element €: t r ue if it does; f al se if not.

copy(a)

Returns a copy of array a.

pop(a)

Removes and returns the last element of array a.

push(a, e)

Adds element € at the end of array a.

splice(theArray, start, del eteCount, val ues)
Inserts and/or deletes elements in an array. A single callto Spl i ce() may insert
items, delete items, or do both simultaneously.

t heAr r ay is a reference to the array to work with. St ar t is an integer that specifies
a zero-based index within t he Ar r ay at which spl i ce() will begin.

del et eCount is an integer that specifies how many elements of t heAr r ay to
remove. If del et eCount is zero, no deletion is performed. val ues (optional) is an
array of elements to insertinto t heAr r ay. If val ues is omitted or an empty array, no
insertion is performed. Elements following the location of insertion or deletion are shifted
so that no gaps appear int heAr r ay, and the | engt h property of t heArr ay is
updated to reflect its new size.

Returns a reference to t heAr r ay.

For example:

75



76

var a = ["a", "b", "c"];
/[l a==["a
splice(a, 0, O
Il a==] : . "b", "c"]
splice(a, 1, 2, ["p", "qQ"]);
[l a==1["x", "p", "q", "c"]
splice(a, 2, 1);
[l a==1["

Some browsers support a built-in Spl i ce( ) method on JavaScript array objects.
There are several important differences between the syntax of the DTArray Spl i ce()
function and built-in Spl i ce() methods. First, the DTArray Spl i ce() is a function
that accepts its target array as a parameter, whereas the built-in Spl i ce() isa
method called directly on array objects. Second, the DTArray Spl i ce() takes an
array of values to insert, while the built-in Spl i ce() takes an arbitrary number of
arguments following del et eCount . Third, the two functions return different things.



DTArrayLayoutManager

The DTArrayLayoutManager package defines the ArrayLayoutManager class.

Classes

ArrayLayoutManager
Arranges components in either a single row or single column within a container.

Components are laid out in the order in which they are added to the associated Container. In a
horizontal orientation, Components are laid out left to right; in a vertical orientation, they are laid
out top to bottom. An ArrayLayoutManager is said to have a main axis and an opposite axis. For
example, in a horizontal orientation, the horizontal (x) axis is the main axis and the vertical (y)
axis is the opposite axis.

An ArrayLayoutManager sets the position, and possibly the size, of all child Components in its
associated Container. It will never resize its associated Container, as the size of the Container
constrains the placement and size of its child Components. The associated Container must
always have a defined size, assigned by calling the Container's set Si ze() method.

There are three padding values that may be established for an ArrayLayoutManager: the inter-
component padding (Set Paddi ng() method), the horizontal edge padding

(set Hor i zont al Paddi ng() method), and the vertical edge padding

(set Verti cal Paddi ng() method). All three padding values default to zero.

Along the main axis, child Components are positioned such that the space between them exactly
equals the inter-component padding specified, and such that the space before the first
Component and (if possible) after the last one are both exactly equal to the main-axis edge
padding specified. The after-last padding condition is not enforced when all child Components
have a fixed main-axis size; see below.

The size of each child Component along the main-axis is determined in one of three ways. If the
ArrayLayoutManager's Set Si ze() method has been called for the given Component, its
main-axis size is set to exactly the size specified in the set Si ze() call. If the
ArrayLayoutManager's Set Wi ght () method has been called for the given Component, it is
a weighted Component and its main-axis size is determined as described below. If neither

set Si ze() norset Wei ght () has been called for a Component, it is not resized along the
main-axis dimension. Note that either Set Si ze() , or set Wi ght () or neither may be
called on a component, but not both.

The main-axis size of a weighted Component is set to equal a particular fraction of the available
space. The available space consists of all pixels along the main axis not used by fixed-size
Components and padding. The fraction of this space that a weighted Component receives is
equal to the Component's weight divided by the total of all weights.

Along the opposite axis, all child Components are given the same location and resized to the
same size. This is done in such a way that the distance between the edge of any Component and

77



the edge of the Container exactly equals the opposite-axis edge padding specified. For example,
a horizontal ArrayLayoutManager attached to a Container of height 30, and with vertical edge
padding of 5, will set the height of all child Components to 20 and center them vertically within the
Container, leaving 5 pixels of margin along the top and bottom of the Container.

Inherits from DTLayoutManager.LayoutManager.

Constructor

ArraylLayout Manager (ori ent ati on)
ori ent at i on defines the main axis of the container, the axis along which the
manager will lay out the components. Or i ent at i on may be
DTArrayLayout Manager . ArrayLayout Manager . VERTI CAL or
DTArrayLayout Manager . Arr ayLayout Manager . HORI ZONTAL.

Methods

getHorizontalPadding() setPadding(padding)
getPadding() setSize(pixel_size, item)
getVerticalPadding() setVerticalPadding(p)
setHorizontalPadding(p) setWeight(weight, item)

get Hor i zont al Paddi ng()

Returns the horizontal edge padding in pixels. Default is 0.

get Paddi ng()

Returns the padding between components in pixels. Default is 0.

get Verti cal Paddi ng()
Returns the vertical edge padding in pixels. Default is 0.

set Hori zont al Paddi ng( p)
Sets the horizontal edge padding in pixels. Default is 0.

set Paddi ng( paddi ng)

Sets the padding between components in pixels. Default is 0.

set Si ze(pi xel _size, item
Sets a fixed main-axis size for a child Component. pi Xxel _Si ze is a positive integer
specifying the desired size in pixels. i t @m(optional) is a reference to the relevant child
Component: if omitted, i t @mdefaults to the most recently added Component.

set Verti cal Paddi ng(p)
Sets the vertical edge padding in pixels. Default is 0.

set Wi ght (wei ght, item
Sets a main-axis weight for a child Component. Wei ght is a positive number specifying
the desired weight. i t @m(optional) is a reference to the relevant child Component: if
omitted, i t @mdefaults to the most recently added Component.

78



Functions
None.

79



DTAttachmentLayoutManager

Defines the AttachmentLayoutManager class.

Classes

AttachmentLayoutManager

The AttachmentLayoutManager class allows the developer to attach child components to the
edge of a Container, or to each other, in flexible ways. By positioning and sizing the child
Components within a Container, and possibly resizing the container itself, an
AttachmentLayoutManager will automatically satisfy all of the constraints imposed by the
attachments.

Attachments are specified for six attachment points of child Components. There are three
horizontal attachment points: the LEFT side, the RIGHT side, and the HORIZONTAL center axis;
and three vertical attachment points: the TOP side, the BOTTOM side, and the VERTICAL center
axis. (Note that attachment points (sides and axes) are specified with all-uppercase strings.)

Every child Component must have an attachment on at least one horizontal and one vertical
attachment point. A single attachment in either dimension determines the positioning of the
Component in that dimension. A child Component may also have attachments on two attachment
points in either or both dimensions. When this is the case, the Component is resized in the
relevant dimension so that both attachments are satisfied.

Most attachments are fixed attachments. A side of a Component may be attached to the
corresponding edge of the Container, to the corresponding side of a sibling Component, or to the
opposite side of a sibling. A center axis of a Component may be aligned with the corresponding
center axis of the Container, or the corresponding center axis of a sibling. These fixed
attachments all have associated offsets, which specify a margin in pixels between the attachment
point and the location to which it is attached. Offsets may be positive, zero, or negative. For side
attachments, a positive offset will push a component away from the side to which the attachment
applies. For axis attachments, a positive offset will push a component in the positive direction for
that axis: to the right for a horizontal axis; down for a vertical.

Attachment layout managers also support spring attachments. Spring attachments must always
be paired on opposing sides of a Component; either LEFT and RIGHT; or TOP and BOTTOM.
Each spring attachment has an associated weight rather than a fixed offset. A Component with
spring attachments is positioned such that the ratio of the offsets for the attachments matches the
ratio of their spring weights. Spring attachments never cause Component resizing. Spring weights
must always be positive.

In some cases, it is possible to specify multiple attachments for a single attachment point, which
is called ganging. When ganging is used, the Components will be positioned and sized such that
all attachment offsets are at least satisfied. In other words, any attachment in a gang may be
over-satisfied (offset greater than specified), but none will be under-satisfied. When spring
attachments are ganged, all spring weights in the gang must be equal.

If the Container has natural sizing (see DTComponent), the layout manager (when called) will
resize it to exactly fit around its child Components, leaving right and bottom margins

80



corresponding to the values set with set HSpaci ng() and set VSpaci ng() . Some
Components' size or position may depend on the size of the Container, such as those attached to
its right or bottom edges or aligned with its center. When the Container is sized to fit around its
Components, only those Components that do not depend on the Container’s size are considered.
If there are no non-dependent Components in a given dimension, the Container is not resized in
that dimension.

In calling methods that specify attachments, components and siblings are specified by reference.
It is legal to specify a sibling that has not yet been added to the Container, as long as that sibling
is added before layout is initially performed.

There must never be circular attachment dependencies; in other words, if component A is
attached in a given dimension to its sibling B, B must not be attached to A in the same dimension.

Inherits from DTLayoutManager.LayoutManager.

Constructor
At t achnent Layout Manager ()

Methods

alignToContainer(component, axis, offset) setHSpacing(spacing)
alignToSibling(component, axis, sibling, offset)  setVSpacing(spacing)
attachToEdge(component, side, offset) springToEdge(component, side, weight)
attachToSiblingOpposite(component, side, springToSiblingOpposite(component, side,
sibling, offset) sibling, weight)

attachToSiblingSame(component, side, sibling, unattach(component, point)
offset)

al i gnToCont ai ner (conponent, axis, offset)
Establishes a fixed attachment with the specified Of f set (optional) along the horizontal
or vertical axi S between the center of the cOnponent and the center of the
Container. If of f set is omitted, a default of 0 is used.

Attachments set with this method may not be ganged.

al i gnToSi bl i ng(conponent, axis, sibling, offset)
Establishes a fixed attachment with the specified pixel Of f Set (optional) along the
horizontal or vertical axi S between the center of the conponent and the center of
the specified Si bl i ng. If of f set is omitted, a default of 0 is used.

Attachments set with this method may not be ganged.

attachToEdge( conponent, side, offset)
Establishes a fixed attachment with the specified pixel Of f set (optional) between the
given Si de of the conmponent and the corresponding edge of the Container. If
of f set is omitted, the default value given in set HSpaci ng() or
set VSpaci ng() is used.

81



Attachments set with this method may be ganged with other attachments set with
attachToEdge() orattachToSi bl i ngQpposite().

attachToSi bl i ngOpposi t e(conponent, side, sibling, offset)
Establishes a fixed attachment with the specified pixel Of f Set (optional) between the
given Si de of the conmponent and the side of its Si bl i ng that is opposite Si de
(for example, left side to right side). If Of f Set is omitted, the default value given in
set HSpaci ng() orset VSpaci ng() is used.

Attachments set with this method may be ganged with other attachments set with

attachToSi bl i ngOpposite() orattachToEdge() .

attachToSi bl i ngSane( conponent, side, sibling, offset)
Establishes a fixed attachment with the specified pixel Of f Set (optional) between the
given Si de of the conrponent and the matching side of its Si bl i ng (for example,
left side to left side). If Of f Set is omitted, a default of 0 is used.

Attachments set with this method may not be ganged.

set HSpaci ng( spaci ng)
Sets the default pixel offset for horizontal attachments set with at t achToEdge()
andatt achToSi bl i ngQpposi t e() . Default value is 10 pixels.

set VSpaci ng( spaci ng)
Sets the default pixel offset for vertical attachments set with at t achToEdge() and
attachToSi bl i ngOpposi t e() . Default value is 10 pixels.

spri ngToEdge( conponent, side, weight)
Establishes a spring attachment with the specified Wei ght (optional) between the given
Si de of the conmponent and the corresponding edge of the Container. If wei ght is
omitted, a default is used. If this is the first spring attachment for the Si de, the default
weight is 1. If not, the default weight is the weight specified in the previous spring
attachment for the side.

Attachments set with this method may be ganged with other attachments set with

springToEdge() orspringToSi bl i ngQpposite().

springToSi bl i ngOpposi te(conponent, side, sibling, weight)
Establishes a spring attachment with the specified wei ght (optional) between the given
Si de of the conponent and the side of its Si bl i ng that is opposite Si de (for
example, left side to right side). If wei ght is omitted, a default is used. If this is the first
spring attachment for Si de, the default weight is 1; if not, the default weight is the
weight specified in the previous spring attachment for the side.

Attachments set with this method may be ganged with other attachments set with

springToSi bl i ngOpposi te() orspri ngToEdge() .

82



unatt ach(conponent, point)
Clears all attachments associated with the specified pOi Nt (a side or axis) of
conponent . Note that to change an existing attachment, unat t ach() must be
called before a new attachment is set. If unat t ach() is not called, the

AttachmentLayoutManager will attempt to gang the new attachment with the existing
attachment(s).

Functions
None.

83



DTBasicButton

The DTBasicButton package defines the BasicButton class.

Classes

BasicButton

Defines a button object which may include text, an image, and a background color. The image, if
supplied, appears at the left edge of the button. The text, if supplied, is centered in the remaining
space.

The BasicButton class differs from the Button class in that the Basic button lacks the highlighted
border that Button contains. This makes BasicButton appropriate for use in composite widgets
which use Buttons. Most application developers should use Button, instead of BasicButton.

Inherits from DTContainer.Container.

Constructor

Basi cButton(text, icon, tool Tip)
t ext,i con,andt ool Ti p define the text, image, and mouse-over text to be
associated with the button, respectively. All three are optional. I cON is an URL string,
and takes one of two forms. For an image from the Desktop.com site, i CON should
begin with t op. DTPATH. | MAGES, and have the specific location appended. For an
image that resides in the current user's filesystem, i cON should be built using

DTFi | eSyst em nakePri vat eURL() . (See DTFileSystem.) t 0ol Ti p sets
the ALT text to be displayed during mouse-over events.

Actions
cl i cked: the button was clicked.

Methods

getimage() setBackgroundColor(color)
getText() setClicked(isClicked, isOver)
getToolTip() setlmage(icon)
handleMouseEvent(e) setSize(w,h)
makeTable(isDepressed) setText(text)

prePaint(buffer) setToolTip(toolTip)

setAlignment(alignment)

get | mage()
Returns the image used for the button.

get Text ()
Returns the text used for the button.

84



get Tool Ti p()
Returns the text that appears when the mouse is over the image (the ALT text). (This
method is recognized only by Internet Explorer.)

set Al i gnnent (al i gnnment)
Sets the alignment for the text within the button. Valid input includes CENTER (default),
LEFT, and RI GHT.

set Backgr oundCol or (col or)
Sets the background color for the button. COl Or is defined as a 6-digit hex string which
begins with a "#" character, such as "#00CC99."

set | mage(i con)
Sets the image to be used for the button. i CON is an URL string, as for the DTButton
constructor.

set Si ze(w, h)
Sets the width and height of the button in pixels.

set Text (text)
Sets the text string to be used for the button.

set Tool Ti p(tool Ti p)
Sets the text string to appear when the mouse is over the image (the ALT text). (This
method is recognized only by Internet Explorer.)

Note that calling set Si ze(),set | mage() andset Text () all require repaints. For best
results, call these methods before calling addConponent () .

Functions
None.

85



DTBookmarks

The DTBookmarks package defines the DTBookmarks class.

Classes

BookmarkRecord
Defines a Bookmark, with an associated URL and text description.
Inherits from DTObjectStore.RootPersistentObject.

Constructor

Bookmar kRecord(argl, arg2)
ar g1 defines the user ID, and ar g2 the Root Persistent Object with which this
Persistent Object will be associated.

For more information, see DTObjectStore.RootPersistentObject.

Methods
None.

Functions

Cr eat eBookmar k$(path, url, desc)
Creates a new BookmarkRecord object and associates it with the given file path. The
given URL is parsed to determine whether a matching provider and/or service exists.
pat h is the path where the object should be placed. ur | is the URL to associate with

the Bookmark object. desSc is the text string to display to the user as the description for
the Bookmark.

Returns the hash: { success: fal se, error: <DTFi | eSystem errno>}

if an error occurred, and { success: true, bookmar kr ecor d: <obj ect >}
if the BookmarkRecord was successfully created and saved.

86



DTBorderedRadioButtonGroup

The DTBorderedRadioButtonGroup package defines the BorderedRadioButtonGroup class.

Classes

BorderedRadioButtonGroup

Defines a group of radio buttons surrounded by a border and a label. The RadioButtonGroup's
defining characteristic is that only one button in the group may be selected at a time. In the
default state, no item is selected.

A ColumnLayoutManager is automatically attached to the group. It may be manipulated using the
get Layout Manager () accessor method. (See DTColumnLayoutManager for details.)
Radio button groups should not be explicitly sized: calling set Si ze() will cause visual
truncation of the group.

BorderedRadioButtonGroups are non-circular Panes. They understand up- and down-arrow keys,
tab keys, and the spacebar, as well as mouse events.

See also DTRadioButtonGroup.RadioButtonGroup.
Inherits from DTPane.Pane.

Constructor

Bor der edRadi oBut t onGr oup(t ext)

t ext (optional) is the text string for the group label.

Actions
changed: selection has changed to a different item in the group.

Methods

additem(text, data) setCheckedltemByData(data)
getCheckedltemData() setLabel(text)
setAllowUserUncheck(allow) uncheckAllltems()

setCheckedltem(index)

addl ten(text, data)
Adds an option to the group, with the specified t €Xt string and dat a (optional).
Options in the group appear in the order in which they are added. If dat a is absent,
t ext is used for the option's data.

get Checkedl t enDat a()

Returns the data associated with the currently selected option, or nul | if no option is
selected.

87



set Al | owser Uncheck(al | ow)
Sets whether the radio button group may be manipulated such that nothing is selected.
When al | owis t r ue, users may deselect by clicking a selected option. Default is
fal se.

set Checkedl t en( i ndex)
Sets the selection within the group by (zero-based) index position.

set Checkedl t enByDat a( dat a)

Sets the selection in the group, as defined by the data associated with the desired option.

set Label (t ext)
Sets the t ext string for the group label.

uncheckAl I I tens()
Resets the group to the state in which no option is selected.

Functions
None.

88



DTBorderedWindow

The DTBorderedWindow package defines the BorderedWindow and BorderedWindowFrame
classes.

Classes
BorderedWindow

Defines the inner (window) area of a bordered window.
Inherits from DTWindow.Window.

Constructor

None. Should not be instantiated directly, but its methods are inherited by several other
object classes.

Actions
None. Actions are delivered from the BorderedWindowFrame associated with the window, and
include cl osed, r esi zed, noved, andi coni zed.

Methods

doneLoading() setBackgroundColor(color)
getMenuBar() setMenuBar(bool)
loading() setTitle(title)

donelLoadi ng()
Called when the window is finished loading, just prior to the application calling itself.

get MenuBar ()

Returns a reference to the menu bar object, or nul | if none exists.

| oadi ng()
Displays an in-pane method between the painting of the window and the painting of the
initial application components.

set Backgr oundCol or (col or)
Sets the background color for the inner portion of the window. COl Or is defined as a 6-
digit hex string which begins with a "#" character, such as "#00CC99."

set MenuBar ( bool )

Sets whether the window should provide space for an application menu bar. t r ue if
space should be provided; f al se if not.

89



setTitle(title)
Setsthet i t | e string to be displayed for the window in the title bar.

BorderedWindowFrame
Defines the frame for the BorderedWindow.
Inherits from DTWindowFrame.WindowFrame.

Actions

cl osed: the user has clicked on the "x" to close the window.

r esi zed: the user has dragged the frame to resize the window.
I coni zed: the user has clicked on the iconize button.

noved: the user has dragged the window to move it.

Methods
init() setTitle(title)
setSizeFromDrawable(w, h)
init()
Initializes the window.

set Si zeFr onDr awabl e(w, h)
Sets the pixel width and height of the frame, as extending from the inner region of the
window.

setTitle(title)
Setsthe ti t | e string to be displayed for the window in the title bar.

Functions
None.

90



DTBrowser

The DTBrowser package provides functions used to determine what browser is in use.

Classes
None.

Functions

| sl E(version)
Returns t r ue if the browser is Internet Explorer of at least the numeric ver Si on
specified; f al se if not. (Nul | or no argument is equivalent to 0.)

| sNet scape(version)
Returns t r ue if the browser is Netscape of at least the numeric VEer Si on specified;
fal seifnot. (nul | or no argument is equivalent to 0.)

91



DTBrowserWindow

The DTBrowserWindow package defines the BrowserWindow class.

Classes

BrowserWindow

Opens a new browser window and gives it focus. (This class is primarily a wrapper for the native
JavaScript Wi ndow. open() method.)

Inherits from DTObjectFramework.DTObject.
Constructor

Br owser W ndow( ur |)
ur | (optional) specifies the website to display on launch.

Methods

draw$() setMode(str)
setDelay(msecs) setName(name)
setFeatures(str) setSize(w, h)
setHTML(html) setURL(url)

setLocation(x, y)

dr aws()

Creates the new window, using the applied settings. Does not return until the window has
been created. Returns a reference to the new window, just as JavaScript's
wi ndow. open() method.

set Del ay(nsecs)
Sets a delay for the window's appearance in milliseconds. Due to the event model, new
browser windows have a tendency to appear behind the Desktop window. Setting a delay
solves this problem, and displays the window in its proper place on top. (The default
delay of 100ms works well with both IE4 and IE5.)

set Features(str)
Sets the features used to call Wi ndow. open( ) . Any features without a
corresponding method function should be included here. By default, this string reads:
| ocati on=yes, nenu=yes, tool bar=yes, scrollbars=yes,
resi zabl e=yes, status=yes.

set HTM_(ht m )
Sets the ht M to be the window's content. (An alternative to set URL() .)

92



set Location(x, Yy)
Sets a screen location for the top left corner of the window, overriding set Mode() .
(This method works in IE5 and NN, but not in IE4.)

set Mbde(str)
Sets the display mode for the window, which may be aut o (the default) or nor mal . In
aut o mode, the window will appear slightly smaller than the Desktop window, and
centered within it. In Nor mal mode, the window's size and position will be determined
by browser defaults.

set Nane( nane)
Sets the text string to display in the window's title bar.

setSize(w, h)
Sets a width and height for the window, overriding set Mode() .

set URL(url)
Sets an initial URL for the window to display.

Functions
None.

93



DTButton

The DTButton package defines the Button class.

Classes

Button

Defines a button object which may include text and an image. The image, if supplied, appears at
the left edge of the button. The text, if supplied, is centered in the remaining space.

Inherits from DTContainer.Container.

Constructor

Button(text, icon, toolTip)
t ext,i con,andt ool Ti p define the text, image, and mouse-over text to be
associated with the button, respectively. All three are optional. i COnN is an URL string,
and takes one of two forms. For an image from the Desktop.com site, i CON should
begin with t op. DTPATH. | MAGES, and have the specific location appended. For an
image that resides in the current user's filesystem, i cOn should be built using

DTFi | eSyst em makePri vat eURL() . (See DTFileSystem.) t 0ol Ti p sets
the ALT text to be displayed during mouse-over events.

Actions
cl i cked: the button was clicked.

Methods

getimage() setBackgroundColor(color)
getText() setlmage(icon)
getToolTip() setText(text)
setAlignment(alignment) setToolTip(toolTip)

get | mage()

Returns the image used for the button.

get Text ()
Returns the text used for the button.

get Tool Ti p()

Returns the text that appears when the mouse is over the image (the ALT text). (This
method is recognized by Internet Explorer only.)

set Al i gnnent (al i gnnment)

Sets the alignment for the text within the button. Valid input includes CENTER (default),
LEFT, and Rl GHT.

94



set Backgr oundCol or (col or)

Sets the background color for the button. Col Or is defined as a 6-digit hex string which
begins with a "#" character, such as "#00CC99."

set | mage(i con)
Sets the image to be used for the button. i CON is an URL string, as for the DTButton
constructor.

set Text (text)
Sets the text string to be used for the button.

set Tool Ti p(tool Ti p)

Sets the text string to appear when the mouse is over the image (the ALT text). (This
method is recognized only by Internet Explorer.)

Note that calling set Si ze(),set | mage() andset Text () all require repaints. For best
results, call these methods before calling addConponent () .

Functions
None.

95



DTCallback

The DTCallback package defines the Callback class.

Classes
Callback

Defines a wrapper for a function or method to be invoked at a later time, potentially more than
once. A Callback object manages three things: a target to be invoked, a creator data parameter,
and a caller data parameter.

A Callback object's target is established when the Callback object is instantiated. The target is
either a function reference or an object-reference/method-name pair. Blocking functions and
methods cannot be used as Callback targets.

Creator data and caller data are parameters that are passed to the target when it is invoked. Both
are optional, and may store values of any type. Creator data is established when the Callback is
instantiated, and does not vary from invocation to invocation. Caller data is established when the
Callback is invoked, and may vary from invocation to invocation.

The Callback class is a global symbol, meaning that Callback objects may be instantiated without
reference to the DTCallback package.

See also DTNamedCallback.

Inherits from DTObjectFramework.DTObject.
Constructor

Cal | back(argl, arg2, arg3)

Constructs a Callback object.

To create a Callback to a function, pass a reference to the target function for ar g1.
Creator data may be passed for ar g2 (optional).

To create a Callback to a method, pass a reference to the object containing the target
method for ar g1, pass a string containing the name of the target method for ar g2.
Creator data may be passed for ar g3 (optional).

Methods

call (arg)
Invokes the Callback. ar g (optional) provides caller data.

Functions
None.

96



DTCheckBox

The DTCheckBox package defines the CheckBox class.

Classes
CheckBox

Defines a single checkbox, which may include a text label extending to the right.
Inherits from DTContainer.Container.

Constructor

CheckBox(text, checked)
t ext (optional) specifies the text string for the CheckBox. checked (optional)
specifies whether the CheckBox is initially checked: t I ue if checked, f al se if not. If
absent, the CheckBox will be initially unchecked.

Actions
checked: the CheckBox has changed to the checked state.
unchecked: the CheckBox has changed to the unchecked state.

Methods
getChecked() setChecked(checked)
getText() setText(text)

get Checked()
Returns the state of the CheckBox: t I ue if checked; f al se if not.

get Text ()
Returns the text string associated with the CheckBox.

set Checked( checked)
Sets the state of the CheckBox: t r ue if checked; f al se if not.

set Text (text)
Sets the text string associated with the CheckBox.

Functions
None.

97



DTColumnLayoutManager

The DTColumnLayoutManager package defines the ColumnLayoutManager class.

Classes

ColumnLayoutManager

A layout manager that arranges child Components in a specified number of columns.
Components flow down, then across, in the order in which they were added. Items are arranged
roughly to minimize the height of the columns.

Inherits from DTLayoutManager.LayoutManager.

Constructor

Col uimLayout Manager ()

Methods
setColSpacing(spacing) setVertSpacing(spacing)
setNumCaols(n)

set Col Spaci ng(spaci ng)

Sets the number of pixels separating columns horizontally. Default is 20.

set NuntCol s( n)
Sets the number of columns. Default is 1.

set Vert Spaci ng(spaci ng)
Sets the number of pixels separating components vertically. Default is 5.

Functions
None.

98



DTComponent

The DTComponent package defines the Component class.

Classes

Component

Defines a generic component. Serves as the base class for all GUI components. May be
instantiated directly to create a component whose appearance is to be defined by HTML content.

Inherits from DTContent.Content.

Constructor

Conponent ()

Actions
r esi zed: the Component has been resized.
noved: the Component has been moved.

Methods

addActionListener(o, m) setActionLabel(label)
addMouselListener(o, m) setCursor(pointer_img)
getActionLabel() setEnabled(enabled)
getScreenLocation() setFocusable(focusable)
getSizing() setHeight(h)

isActive() setLocation(x, y)
isEnabled() setPrimary()
removeActionListener(o, m) setSize(w, h)
removeMouseListener(o, m) setSizing(s)
repaint(now) setWidth(w)

addActi onLi stener(o, m
Adds an action listener to the Component. An action listener is a method that is called
each time the Component emits an action. The actions emitted by each Component class
are described in its "Actions" section. A Component may have any number of action
listeners, and the order in which they are called is undefined.

0 is a reference to the object in which the listener method is to be called, and mis the
name of the method. The listener method should be defined to accept three parameters:
obj , a reference to the Component emitting the action; | abel , the Component's
action-label string; and act i on, a string that specifies what action is occurring.

99



addMbuselLi stener(o, m

Adds a mouse listener to the Component. A mouse listener is a method that is called
each time a mouse event occurs within the Component. A Component may have any
number of mouse listeners, and the order in which they are called is undefined.

0 is a reference to the object in which the listener method is to be called, and Mis the
name of the method. The listener method should be defined to accept one parameter:
event , areference to a DTEventObject.EventObject that describes the mouse event.

Note that mouse listeners provide a lower-level view of user activity than action listeners.
Most Component classes are designed to emit actions each time an event occurs,
including each time a mouse event occurs. Therefore, it should rarely be necessary to
use a mouse listener in addition to normal Component action listeners.

get Acti onLabel ()
Returns the action label string set with set Act i onLabel ().

get Scr eenLocati on()
Returns an object with properties X and Yy, whose integer values describe the location of
the Component relative to the Desktop.com screen (the browser window in which the
Desktop.com environment is running). This method differs from get Locat i on(),
which returns the coordinates of a Component relative to its parent Container.

get Si zi ng()

Returns the current sizing style.

i sActive()
Returns t r ue if the Component is active, f al se if inactive. (Being active is a focus-
related concept.)

i sEnabl ed()
Returns t r ue if the Component is enabled, f al se if not.

removeActi onLi stener(o, m
Removes an action listener added with addAct i onLi st ener ().

renoveMouseli stener(o, m
Removes a mouse listener added with addMouseLi st ener ().

repai nt ( now)
Redraws the Component by regenerating its on-screen HTML content. If NnOWist r ue,
repainting occurs immediately. If NnOwis f al se or omitted, repainting is scheduled to
occur sometime in the near future. It is often best to delay r epai nt () , as in some

cases multiple requests may be made to repaint the same Component; if these requests
are for delayed repainting, only a single redraw will occur.

100



set Acti onLabel (| abel)

Sets a string label for the component that will appear as a parameter in calls to action
listeners, providing a way to distinguish between multiple components that call the same
action listener. (See addAct i onLi st ener () above.) Each component subclass
has its own, default action label; this default usually matches the name of the class.

set Cur sor (poi nter _i ng)
Sets the image for the cursor to show when it is over the Component. poi nt er _i ngy
is a string that takes one of the following values: " aut 0" ," crosshai r",
"default","e-resize","hel p","nove","n-resi ze"," ne-
resize","nwresize","pointer”,"s-resize","se-resize"
"SwWresize","text",or"wait". Defaultvalueis " def aul t".

(Supported only in Internet Explorer. Equivalent to the St y| €. cur sor property in the
Internet Explorer DOM: consult a DHTML reference for details.)

set Enabl ed( enabl ed)
Enables the Component if enabl ed ist r ue; disables itif enabl ed isf al se. A

disabled Component does not respond to mouse or keyboard events, and may have a
different appearance than when it is enabled. Components are enabled by default.

set Focusabl e(f ocusabl e)
Sets whether the component may receive focus. Defaultis t r ue.

set Hei ght (h)
Changes the height of the component to the defined pixel size. Generates the action
resi zed.

set Location(x, Yy)
Moves the component to the defined location in its container. Generates the action
noved.

setPrimry()
Makes the specified Component the primary Component on the screen. (Being primary is
a focus-related concept.)

setSize(w, h)
Changes the width and height of the component to the defined pixel dimensions.
Generates the action I esi zed.

set Si zi ng(s)
Sets the sizing style for the Component. The sizing style is a hint to layout managers
regarding how a Component may be resized during the layout process. Different layout
managers interpret the sizing style in different ways.

Valid sizing styles are DTConponent . Conponent . SI ZI NG_NATURAL, which
indicates that a Component should be allowed to assume the size dictated by its content;

101



DTConponent . Conponent . SI ZI NG_W DTH, which indicates that a
Component's width may be changed but its height should remain unchanged; and
DTConponent . Conponent . SI ZI NG_BOTH, which indicates that a Component
may be resized in both dimensions.

The default sizing style is SIZING_NATURAL.

set Wdt h(w)

Changes the width of the component to the defined pixel size. Generates the action
resized.

Functions
None.

102



DTConfirm

The DTConfirm package defines the DoConf i r nf5() function.

Classes
None.

Functions

DoConfirnt(text, where)
Displays a confirmation dialog window, similar to JavaScript's conf i r n() , with the
specified t ext string, and OK and Cancel buttons. Wher e (optional) specifies a
reference to an object (either an Application or a Window) relative to which the dialog is
to be centered and made modal. If Wher € is omitted, the dialog will be centered on the
screen and made system-modal.

DoConf i r mb() should always be called as a blocking function. It will not return until
the user clicks the OK or Cancel button in the dialog displayed. The return value will
indicate which button was pressed: t I ue for the OK button, and f al se for the Cancel
button.

DoConf i r () is preferable to the JavaScript conf i r m() because it is
implemented within the Desktop.com environment, which allows more control over
appearance and provides the user with feedback that clearly comes from within
Desktop.com.

Dialog windows are resized to fit the text. t eXt is wrapped where appropriate, may
include HTML tags, and will translate " \ N" appearing in text as a line break.

103



DTContainer

The DTContainer package defines the Container class.

Classes

Container

Defines a generic container. By default, a container does not include a layout manager.
Inherits from DTComponent.Component.

Constructor

Cont ai ner (| ayout _manager)

| ayout _nmanager (optional) is a reference to the LayoutManager object to be
attached to the container.

Actions

None.

Methods

addComponent(component, constraints) removeComponent(c)
doLayout(force) removeComponents()
getComponent(index) setLayoutManager(Im)
getLayoutManager() setSize(w, h)

getNumberComponents()

addConponent (conponent, constraints)
Adds the specified component to the container. CONSt r ai Nt s is the constraint object
to be passed to the layout manager's addConponent method. Note that not all layout
managers require a constraints object.

doLayout (force)
Asks the layout manager to recalculate layout.

get Conponent (i ndex)
Returns a reference to the child Component with the specified I ndex from the

components array of the container. (Index numbers are generated for components by the
order in which they are added to a container.)

get Layout Manager ()

Returns the LayoutManager for this Container, or nul | if none exists.

get Nunber Conponent s()
Returns the number of child components in this container.

104



r emoveConponent (¢)
Removes a component from the container. c is a reference to the component to remove.

r emoveConponent s()
Removes all components from the container.

set Layout Manager (1 m
Sets the layout manager. | mis a reference to the layout manager to set. Any
components added before this method will be ignored by the layout manager.

setSize(w, h)
Specifies the width and height dimensions of the container. Causes the LayoutManager
(if any) to recalculate layout.

Functions
None.

105



DTContent

The DTContent package defines the Content class.

Classes

Content

The Content class is the browser-specific class that represents a region of dynamic HTML
content in the browser.

Never construct a raw Content instance. Instead, use DTConponent . Conponent , a
browser-neutral subclass of DTContent.

Inherits from DTObjectFramework.DTObject.

Constructor
DTCont ent ()

Methods

getBackgroundColor() setBackgroundColor(color)
getBackgroundimage() setBackgroundimage(image_location)
getContent() setContent(content, style)
getimages() setHeight(h)

getLocation() setLocation(x, y)

getSize() setSize(w, h)

getStyle() setStyle(style)

getVisible() setVisible(desiredVisibility)
getZ() setWidth(w)

IsOnScreen() setZ(z)

get Backgr oundCol or ()

Returns the background color for the region.

get Backgr oundl nmage()
Returns the background image for the region.

get Content ()
Returns the cont ent (as an HTML string) and an optional St y| € (a reference to a
DTSt yl e. St yl e object) of the region.

get | mages()
Returns the array of images for the region. The order of entries in the array corresponds
to the order in which <IMG> elements appear in the region's content. Each entry in the
array is an IMG object from the browser DOM. (Consult a DHTML reference for details.)

106



The array contains only those <IMG> elements from the content of the region itself; it
excludes <IMG> elements from child regions.

The main purpose of calling get | mages() is to change an image dynamically.
For example:

this.getlmages()[0].src=top. DTPATH. | MAGES+" f 00. gi f"

get Locati on()
Returns the location of the region relative to its parent Container.

get Si ze()
Returns an object with two properties: W, the width, and h, the height of the region in
pixels.

get Styl e()
Returns the style of the region as an instance of DTSt y| e. St yl e. If there is no
current style object for the region, one is created and returned.

get Vi si bl e()

Returns whether the region is visible. Defaultis t r ue.

get Z(z)

Returns the zero-based stacking position of the region within its parent Container.

| sOnScr een()
Returns t r ue if the region is painted in the browser; f al se if not.

set Backgr oundCol or (col or)
Sets the background color for the region. COl Or is defined as a 6-digit hex string which
begins with a "#" character, such as "#00CC99."

set Backgr oundl nage(i mage_| ocati on)
Sets the background image for the region. i mage_| ocat i on is an URL string, and
takes one of two forms. For an image from the Desktop.com site, i CON should begin
with t op. DTPATH. | MAGES, and have the specific location appended. For an image
that resides in the current user's filesystem, i CON should be built using
DTFi | eSyst em makePri vat eURL() . (See DTFileSystem.)

set Content (content, style)
Sets the cont ent (as an HTML string) and an optional St y| e (a reference to a
DTSt yl e. St yl e object) of the region.

set Hei ght (h)
Sets the height of the region in pixels.

107



set Location(x, Yy)
Sets the location of the region relative to its parent Container.

set Si ze(w, h)
Sets an object with two properties: W, the width, and h, the height of the region in pixels.

set Styl e(style)
Sets the style of the region as an instance of DTSt yl e. St y| e. If the style object is
not supplied, a default (empty) style is used.

setVisible(desiredVisibility)
Sets whether the region is visible: t r ue if visible, f al se if not. Defaultis t r ue.

set Wdt h(w)
Sets the width of the region in pixels.

set Z(z)
Sets the zero-based stacking position of the region within its parent Container.

Functions
None.

108



DTDetailsRow

The DTDetailsRow package defines the DetailsRow class.

Classes

DetailsRow

Defines a table row of text, which includes an icon to the far left. DetailsRow differs from a table in
that the spacing, alignment and width of the cells of text may be set individually.

Note that for efficiency, r epai nt () is not called after changing text, icons or any of the
content. To see changes, call r epai nt () on this object after making the changes.

The number of columns exclude the icon at the left of the row.
Inherits from DTComponent.Component.

Constructor

Det ai | sRow( col um_text, width, icon, alignnents)
col unm_t ext is an array of strings which specify the text of each column in the table;
W dt h is an array of pixel values which specify their widths. i COnN is a string URL

which sets the icon to be displayed before the first column. al i gnnment s is an array of
symbolic constants which specify the column/text alignments: possible values include

DTDet ai | sRow. Det ai | sRow. ALI GN_CENTER,
DTDet ai | sRow. Det ai | sRow. ALI GN_LEFT, and
DTDet ai | sRow. Det ai | sRow. ALI GN_RI GHT.

Actions
None.

Methods

getText(col_num) setlcon(icon)
setColumnPadding(padding)  setText(col_num, text, alignment, width)
setColumnWidth(width)

get Text (col _num
Returns the text from the column specified by its zero-based column number.

set Col umPaddi ng( paddi ng)

Sets the number of pixels between columns.

set Col umW dt h(wi dt h)
Sets the width of the columns in pixels. Wi dt h is an array of integers.

109



setl con(icon)

Sets the icon to be displayed before the first column of the row. i CON is an URL, as
defined for the DTDetailsRow constructor.

set Text (col _num text, alignnment, w dth)
Sets the text string to be displayed in the column specified by its zero-based column
number. al i gnment is a symbolic constant, as defined for the DTDetailsRow
constructor al i gnment s parameter, which sets the alignment for the text within the
column. Wi dt h defines the width of the text within the column, in pixels.

Functions
None.

110



DTDialogWindow

The DTDialogWindow package defines the DialogWindow class.

Classes

DialogWindow

Defines a dialog window. Dialog windows are similar to Application windows, except that while in
existence, they maintain focus, and are not resizable.

Inherits from DTBorderedWindow.BorderedWindow.

Constructor

D al ogW ndow()

Actions
None.

Methods
None. (All methods are inherited.)

Functions
None.

111



DTDragManager

The DTDragManager package enables drag and drop both within and between Desktop
applications. Enabling drag for a component causes rubber-banding of the component: an outline
of the component is created when the user holds the mouse down when above it, which follows
the movement of the cursor. When the mouse is released, DragManager checks to see if it is
over an interested target, and notifies that target if it is.

The DragManager does not check the visibility of a container before firing the drop event, nor
does it check to see if that container is blocked by an arbitrary component (or even clipped by a
parent container) on the screen. Doing this would require the DragManager to examine the
location of every component on the screen, which would be prohibitively expensive.

To verify the validity of a drop event, the DragManager checks to see if the event is blocked by a
window, then leaves any additional checks to the application developer (the owner of the
window). Additional checks are necessary only if the droppable component could be blocked or
clipped by some other component (or made invisible).

The DragManager does not perform any actions implied or necessitated by a drag and drop
procedure. It simply notifies the drop Component of the event. The involved Components must
then handle any action subsequent to the drop themselves, such as moving the component, and
sending re-parenting notification to the appropriate Containers.

Classes
None.

Functions

Di sabl eDr ag( conponent)
Disables dragging for the specified component.

Di sabl eDr op(conponent, object, nethod)
Unregisters the specified component as an interested drop target.

Enabl eDr ag( conponent)
Enables dragging for the specified component. The Drag Manager then listens for mouse
events and creates and moves the component outline.

To make componentA draggable, use:
DTDr agManager . Enabl eDr ag( conponent A)

Enabl eDr op(conponent, object, method)
Registers a component as an interested drop target. When a drag event ends on such a
component, the DragManager sends notification of the event by passing the component
being dragged as an argument to the specified 0bj ect and et hod.

112



To make componentB available to drag-n-drop events, use:
DTDr agManager . Enabl eDr op( conponent B, obj ect, net hod)

Then, if any draggable component (such as componentA) is dragged and dropped on
componentB, obj ect [ met hod] () is called, with the first argument as
conponent B and the second argument as conponent A. et hod is

dr opPer f or ned by default.

113



DTDropDownComboBox

The DTDropDownComboBox package defines the DropDownComboBox class.

Classes

DropDownComboBox

Defines a text input field with a drop-down combo box, in which users may either type in the value
or select among a list of drop-down menu items.

Inherits from DTPane.Pane.

Constructor

Dr opDownConmboBox (i ndex)
I ndex (optional) specifies the default selection. If absent, the default selection will be
zero (the first item in the Menu).

Actions

changed: The user has changed the selection. Call get | ndex() orget Text () to
determine which is the current selection.

Methods

addltem(text, index, id) setEditable(bool)
getindex() setindex(index)
getSelectedld() setSelectedld(id)
getText() setText(text)
modifyText(id, text) setWidth(w)
removeld(id) size()

addl ten(text, index, id)
Adds an item to the list at the specified (zero-based) index location, with the specified

text andi d.

get | ndex()
Returns the (zero-based) index of the current selection.

get Sel ect edl d()
Returns the ID of the current selection.

get Text ()
Returns the text string of the current selection, or the currently visible text.

nodi fyText (id, text)
Changes the display-text of the item with the specified i d tot ext .

114



renmovel d(i d)
Removes the item with the specified i d.

set Edi t abl e(bool)
Sets whether the text input field is editable: t r ue if editable (default); f al se if not.

set | ndex(i ndex)
Sets the current selection by (zero-based) i ndex. The changed action is not emitted.

set Sel ect edl d(i d)

Sets the selected item's ID to | d. Pass in nul | to reset the menu to the first option in
the list.

set Text (text)
Sets the text string displayed in the text field to t ext .

set Wdt h(w)
Sets the width of the DropDownComboBox in pixels.

Functions
None.

115



DTEventGrabber

The DTEventGrabber package defines the EventGrabber class.

Classes
EventGrabber

Defines an event grabber object, which is an invisible component that may be sized and placed
over other components in order to intercept events and translate them into actions. An event
grabber may be placed over components that do not normally generate actions, in order to create
the illusion that they do. This allows developers to add events and actions as desired.

An event grabber may also be placed over multiple Components, to be used for unified mouse
listening. It will emit a single event, with pixel coordinates, for all mouse events which take place
within it. If the coordinates for all Components are known, the event may then be processed for
the appropriate Component, without attaching an event listener to each Component individually.
This feature is also useful when only a single action is required from multiple components.

The component generates ¢l i cked and doubl ecl i cked actions.
Inherits from DTComponent.Component.

Constructor

Event G abber ()

Actions
cl i cked: the user has clicked on the EventGrabber.
doubl ecl i cked: the user has double-clicked on the EventGrabber.

Methods
None. (Methods allowing manipulation are inherited from content.)

Functions
None.

116



DTEventObject

The DTEventObject package defines the EventObiject class.

Classes
EventObject

Defines a structure that provides details of a mouse or keyboard event. Unlike most classes in the
DTAPI, EventObject exposes properties rather than methods.

Constructor
None. (This class should not be instantiated directly.)

Properties

alt offY
component original
ctrl shift
key type
mButton X

offX y

alt

A Boolean indicating whether the Alt key was down at the time of the event: t r ue if
pressed, f al se if not. Present only for keyboard events.

conponent
A reference to the Component in which the event occurred. If the event is being
redistributed to a parent Component, COnmponent is a reference to the immediate child
Component passing the event up.

ctrl
A Boolean indicating whether the Ctrl key was down at the time of the event: t r ue if
pressed, f al se if not. Present only for keyboard events.

key
The key that was pressed. Present only for keyboard events. Symbolic constant that may
be compared against the constants defined in DTKeyEvent. (See also Appendix II:
KeyEvent constants.)

nBut t on

An integer specifying which mouse button was pressed. Present only for "fDus edown,
nouseup, and cl i ck events. For a two-button mouse, left button is 1, and right is 2.
For a three-button mouse, left is 1, right is 3, and center is 2.

117



of f X

The x coordinate of the mouse pointer at the time of the event, relative to conmponent .
Present only for mouse events.

of fY
The y coordinate of the mouse pointer at the time of the event, relative to conponent .
Present only for mouse events.

origi na
A reference to the Component in which the event originally occurred.

shift
A Boolean indicating whether the Shift key was down at the time of the event: t I ue if
pressed, f al se if not. Present only for keyboard events.

type
A string indicating the type of event that has occurred. Possible values are
"nmousenove”, " nousedown”, " nouseup”,"click","keydown",
"keyup",and " keypress".

X
The x coordinate of the mouse pointer at the time of the event, relative to the entire
browser window. Present only for mouse events.

y
The y coordinate of the mouse pointer at the time of the event, relative to the entire
browser window. Present only for mouse events.

Functions

None.

118



DTFileDownload

The DTFileDownload package allows users to select and download files from their account to
their local computer.

Classes
None.

Functions

downl oad$( pat h_or _app)
Downloads a file from the user's filesystem to their local computer. If the
pat h_or _app argument is a string, it is assumed to be a path to the file to be
downloaded, and download begins immediately. If pat h_or _app is a reference to an

application object, the DTFi | eW ndow. Get Fi | e$() is called to allow the user to
select the file to downloaded.

119



DTFileSharing

The DTFileSharing package provides a layer on top of the filesystem that allows users to share
directories with other users, and to access others' shared files.

File sharing is based on two mechanisms: shared navigation and sharing permissions.

Shared navigation enables a user to specify a path into another user's filesystem space. Paths
within a user's space are relative to the filesystem root. Paths that reference another user's space
are relative to that user's share root. A user's share root is a publicly visible directory that contains
sharing links, which are smart links to the directories that the user has defined as shared. A path
into another user's space has the syntax " user : / shar enane/ pat h", where user is the
target user's username, Shar enane is the name of the share link to follow in the target user's

share root, and pat h is a path within the directory to which Shar enane points.

Sharing permissions are attributes of a sharing link. Sharing permissions are embodied in access
control lists, or ACLs. An ACL defines which users the server will allow to follow a sharing link.

A directory is said to be directly shared if it is the target of a sharing link. A directory or file is said
to be indirectly shared if it has an ancestor directory that is the target of a sharing link.

See also DTFileSystem.

All paths are strings of link names separated by slash characters. For more information on paths
and links, see the Developers' Guide chapter: The FileSystem.

Classes

AccessControlList

Encapsulates access permissions on a node in the filesystem. An AccessControlList has one
property per user to whom access is granted.

Inherits from DTObjectStore.PersistentObject.

Constructor
None. (Only cr eat e ACL$() should instantiate this class.)

Methods

set Per mi ssi on(key, val ue)
A wrapper around the Per si st ent Obj ect . set () method which checks that a
valid permission value is supplied. Key is the username as a string, and val ue the
permission allowed, which may be "R’ (read), or "RW (read-write). The special username
"al | " denotes permissions for all users.

120



Functions
Error Returns

In the DTFileSharing package, all blocking functions (i.e., all functions whose names end in "$")
return objects. These objects have a variety of properties, which include properties that match the
blocking function’s argument(s), and a Boolean SUCCESS property that indicates whether the
call succeeded. When success isf al se, there is an er r or property whose value is an
error code. Error codes may be compared against properties of DTFi | eShar i ng. ERRNO
(e.g., DTFi | eShar i ng. ERRNO. ERR_FI LENOTFQOUND), or they may be converted to
meaningful error messages using DTFi | eShar i ng. get Error Stri ng().when
success ist r ue, certain calls place additional properties in the objects they return. These

properties are noted as bracketed return property names in the documentation of each blocking
function.

For example, the object returned from get ACL$( pat h): {path, success,
[error], [acl]} hasapat h property whose value matches the argument passed to
get ACL$() . The success property is always present. When success is f al se,
error is present; when success ist rue, acl is present. In this case, acl is a reference
to the object retrieved by get ACL$() .

The list of definitions for the errors returned is given at the end of the functions list.

creat eACL$( pat h)
Creates and returns a new AccessControlList (ACL) object for a given sharing link under
the current user's share root. pat h is a string which specifies the sharing link on which
the ACL is to be placed, and will be interpreted as relative to the share root. If an ACL
already exists for that sharing link, it will simply be returned.

Returns { pat h, success, [acl, existing], [error]},whereacl
is a reference to the new ACL object, and €Xi St i ng is a Boolean that indicates
whether the ACL already existed.

Possible errors include: ERR | NDI RECT, ERR_NOPATH, ERR_NOTDI R, and
ERR_NOPERMS.

get ACL$( pat h)
Obtains the AccessControlList object, if any, associated with a given sharing link under
the current user's share root. pat h will be interpreted as relative to the share root.

Returns { pat h, success, [error], [acl]}.acl isnull

Possible errors include: ERR_BADPATH, ERR_NOPATH, ERR_NOTDI R, and
ERR_NOPERMS.

121



getErrorString(err)

Converts an error number returned by a DTFileSharing function into an error message
string that may be displayed to users.

get Shar eSt at us$( pat h)

Returns the sharing status of the node specified, by pat h, in the private portion
(anywhere not under the share root) of the user's filesystem. pat h is relative to the
filesystem root.

Note that get Shar eSt at us$() is a potentially expensive operation, as it may need
to traverse many filesystem nodes.

Returns { pat h, success, [sharing], [error]},wheresharingis
nul | if the node is not shared. If the node is shared, sharing is an object with one or
both of { di rect, i ndirect},eachan array of objects { pat h, acl }, with
acl an AccessControlList.

Possible errors include: ERR_BADPATH, ERR_NOPATH, ERR_NOTDI R, and
ERR_NOTPRI VATE.

get Shar eTar get $( shar ePat h)

Returns the target of the sharing link specified by Shar ePat h under the current user's
share root. Shar ePat h is relative to the share root.

Returns { shar ePat h, success, [error], [targetPath]}

Possible errors include: ERR_BADPATH, ERR_NOPATH, ERR_NOTDI R, and
ERR_NOTSHARELI NK.

r emoveACLS$( pat h)

Destroys an AccessControlList on a sharing link under the current user's share root. The
pat h argument is interpreted in the same way as the argument to cr eat e ACLS$() .

Returns { pat h, success, [error]}

Possible errors include: ERR_BADPATH, ERR_NOPATH, ERR_NOTDI R, and
ERR_NOPERNVS.

share$(sharePath, target)

122

Creates a sharing link from the current user's share root to a directory in the current
user's filesystem. Calling shar e$() is the first of two steps necessary to share a
directory; setting up an ACL with cr eat e ACL$( ) is the second.

The shar ePat h argument specifies the path to the link to be created under the share
root. It will be interpreted as relative to the share root. t ar get specifies a path to the
directory being shared, relative to the filesystem root.



Returns { shar ePat h, target, success, [error]}

Possible errors include: ERR_BADARGS, ERR _BADPATH, ERR | NDI RECT,
ERR_NOPATH, ERR_NOTDI R ERR_EXI STS, and ERR_NOSMART.

unshar e$(target)
Destroys a sharing link under the current user's share root. The link to be destroyed may
be specified either by source or by target. To specify a source, provide a path that
resolves to a sharing link under the share root. In this case, only the specified sharing link
is unlinked. To specify a target, provide a path that resolves to a directory that is not
under the share root. In this case, all sharing links that point to the specified directory are
unlinked. To specify a source, use the syntax ":/path/to/link," which will be interpreted as
relative to the share root. To specify a target, omit the colon from your path, and the path
will be interpreted as relative to the filesystem root.

Possible errors include: ERR_BADARGS, ERR _BADPATH, ERR | NDI RECT,
ERR_NOPATH, ERR_NOTDI R and ERR_NOSMART.

Errors

ERR BADARGS: invalid argument(s).

ERR _BADPATH: syntax error in path.

ERR _EXI STS: there is already something at the specified location.

ERR | NDI RECT: shar ePat h traverses a share link, and thus does not point to a shared
folder.

ERR_NOPATH: path does not exist.
ERR _NOPERMS: path points at something that cannot have an ACL.
ERR_NOSMART: the target is of a type that cannot be shared.

ERR _NOTAVAI L.: specified user has no shared area, or specified path points to a symlink that
contains a private path.

ERR _NOTDI R: path attempts to traverse a non-directory.

ERR_NOTEMPTY: specified folder is not empty. unl i nk() orunshar e() everything in it
first.

ERR _NOTFI LE: path points to something that is not a file.

ERR _NOTPRI VATE: path points at something in the shared area. This method is meant only
for things outside the shared area.

ERR_NOTSHARELI NK: path points at something that is not a share link.
ERR _NOUSER: no user with specified username.

123



DTFileSystem

The DTFileSystem package defines a collection of functions that provide a persistent filesystem
hierarchy, within which persistent data may be stored.

The filesystem consists of nodes, which may be files or directories. Files serve as placeholders
for RootPersistentObjects (RPOs). Directories serve to organize files.

A hard link points from a directory node to a node (file or directory) that it contains, and is the
primary link to a node. A smart link also points from a directory to a node that it contains, but is
viewed as a secondary link to a node, and may define secondary routes between directories
and/or files in a user's filesystem. A symbolic link, or symlink, is a path reference to another node
in which only the target node’s path is encoded. By convention, symlinks are used only to create
links to other users’ filesystems.

For more information, see The DTFileSystem.

Classes
None.

Functions
Error Returns

In the DTFileSystem package, all blocking functions (i.e., all functions whose names end in "$")
return objects. These objects have a variety of properties, which include properties that match the
blocking function’s argument(s), and a Boolean SUCCESS property that indicates whether the
call succeeded. When success isf al se, there is an er r or property whose value is an
error code. Error codes may be compared against properties of DTFi | eSyst em ERRNO
(e.g., DTFi | eSyst em ERRNO. ERR_FI LENOTFOUND), or they may be converted to
meaningful error messages using DTFi | eSyst em get Error Stri ng() . When
success ist r ue, certain calls place additional properties in the objects they return. These

properties are noted as bracketed return property names in the documentation of each blocking
function.

For example, the object returned from get $( pat h) : {path, success, [error],
[ obj ect]} hasapat h property whose value matches the argument passed to get $( ) .
The Success property is always present. When success isf al se, err or is present;
whensuccess ist rue, obj ect is present. In this case, Obj ect is a reference to the
object retrieved by get $() .

The list of definitions for the errors returned is given at the end of the functions list.

In general, a path passed to any DTFileSystem function may traverse any kind of link: hard link,
smart link, or symlink. Except where noted, all paths must be absolute.

124



The paths passedto get $(),get Di rect oryEntryArray$(),
getDirectoryEntri es$(),andget Entry$() may be paths within the current
user’s filesystem, or they may refer to files in other users’ filesystems. To refer to another user’s
filesystem, construct a path string of the form “username:/path/toffile. Such paths are interpreted
as relative to the named user’s share root.

addDi r ect or yWat cher $( pat h, wat cher)
Registers Wat cher , a Callback (see DTCallback) to be called when an operation is

performed on the directory specified by pat h. This function is provided to allow graphic
representations of directories to be updated as actions occur in the underlying directories.
Only actions that occur in the named directory are reported; actions in subdirectories are
not.

Returns { pat h, success, [error], [key]},wherethe key returned is
necessary to remove a directory watcher with r enoveDi r ect or yWat cher () .

Removing directory watchers is encouraged when they are no longer needed, in the
interest of efficiency.

Possible errors include:, ERR_BADPATH, ERR_NOPATH, and ERR_NOTDIR.

The Callback provided is called with an object that always has an act i on property that
names the action being performed, and a pat h property, which provides the path to the
directory being watched. Additional properties provide details on the action.

The following act i on / parameter combinations are supported:
ANCESTOR_RENAME / <none>

an ancestor directory has been renamed.
DI R_DELETE/ <none>

the watched directory has been removed. This watcher will never be called
again, even if the directory is recreated.

DI R_MODI FY / <properties>

the watched directory has been modified. <properties> are one or more of the
properties given by DI R_ADD that have changed: either shar ed, or

i conPat hType andi conPat h (in the latter case, both may be nul | ;
which indicates icon removal).

DI R_RENAME /ol dNanme, newNane
the directory has been renamed.
DI R_ UPDATE/entri es

The directory's contents have been updated from the server. There may be no
changes, a single change, or multiple changes; it is best to rebuild any views of
the watched directory. €nt r i €s is an array of the objects returned by

getEntry$().
ENTRY_ADD/ <properties>

a new entry has been added, described by <properties>.
ENTRY_DELETE/nane

the entry specified by nane has been deleted.

125



ENTRY_MODI FY / nane, <properties>
the entry has been modified. <properties> are one or more of the properties
given by ENTRY _ADD that have changed: either Shar ed, or
i conPat hType andi conPat h (in the latter case, both may be nul | ;
which indicates icon removal).

ENTRY_RENAME /ol dNane, newNane

the entry has been renamed.

Note that the watcher will be called immediately with an action of DI R_| NI T, before
addDi r ect or yWat cher $() returns. This provides an initial view of the directory's
contents so that the watcher is guaranteed to be in sync. An ent r i es property is

returned with DI R_I NI T as with DI R_UPDATE.

The following list serves as a summary of when and how watchers are called:

makeDi r ect or y$() : calls ENTRY_ADD for the directory containing the new
directory.

nmove$() to a different directory: calls ENTRY _DELETE for the original containing
directory; DI R_DELETE for the moved node if a directory, and recursively for
subdirectories; and ENTRY_ADD for new containing directory.

nove$() to the same directory (i.e., rename): calls ENTRY_RENANME for the
containing directory; DI R_RENAIVE for the moved node, if a directory; and
ANCESTOR _RENAIVE recursively for subdirectories of the moved node, if a directory.
put $() : calls ENTRY_ADD for the directory containing the new file.

renmoveDi rect ory() : calls ENTRY_DELETE for the containing directory(ies);
and DI R_DELETE for the removed directory.

set | con$() : calls ENTRY_MODI FY for the containing directory(ies); and

DI R_MODI FY for the moved node, if a directory.

smart |l i nk$() : calls ENTRY_ADD for the directory containing the new smartlink.
sym i nk$() : calls ENTRY_ADD for the directory containing the new symlink.

unl i nk$() : calls ENTRY_DELETE for the containing directory(ies).

Watchers are always called in the order indicated. When calls are made recursively for
subdirectories, a preorder depth-first traversal is used, but the order of calls among
sibling subdirectories is undefined. The order of calls among multiple containing
directories is also undefined.

If there are multiple events that cause watchers to be called, the watcher calls from the
various events will always occur in the same order as the events themselves.

basenane( pat h)
Returns the last item in pat h. (For example: path = "path/toffile," basename = "file.") An
empty string indicates that the path is the root directory.

126



canoni cal i ze(path, default_dir)

Turns a path into a canonical path (an unambiguous, simplified form), with pat h
specifying a path, relative path or filename, and def aul t _di r specifying an optional
directory to use when the path is relative.

di r name( pat h)

Returns the directory part of pat h. (For example: path = "path/toffile," dirname =
"path/to.") An empty string indicates the path is either the root directory or something in it.

get $( pat h)

getDi

getDi

Retrieves a RootPersistentObject from the filesystem. Path may be within the current
user's filesystem, or to another user's filesystem.

Returns { pat h, success, [error], [object]}

Possible errors include: ERR_BADCHARS, ERR _NOPATH, ERR_NOTDI R,
ERR_FI LENOTFOUND, and ERR_NOTFI LE.

rectoryEntryArray$(path)
Returns information about the entries in a given directory. Path may be within the current
user's filesystem, or to another user's filesystem.

Returns { pat h, success, [error], [entries]},whereentriesis
an array of the objects returned by get Ent ry$() .

Possible errors include: ERR_BADCHARS, ERR _NOPATH, and ERR_NOTDI R

rectoryEntries$(path)
Returns information about the entries in a given directory. Path may be within the current
user's filesystem, or to another user's filesystem.

Returns { pat h, success, [error], [entries]},whereentriesisa
hash of the objects returned by get Ent r y$() . ( A hash is an object with properties
whose names denote the names of the entries, and whose values are object references.)

Possible errors include: ERR_BADCHARS, ERR _NOPATH, and ERR_NOTDI R

get Entry$( pat h)

Returns information about a given directory entry. Path may be within the current user's
filesystem, or to another user's filesystem.

Returns { pat h, success, [error], [entry]},whereentry isan

object with the properties:
Nname: the name of the entry within the directory specified.

127



shar ed: a Boolean indicating whether the entry is directly shared. Indirect
sharing (sharing of an ancestor directory) is not indicated. This property is not
present for entries in other users' spaces.

i conPat hType, i conPat h:if an icon has been established with

set | con$( ), these properties are present and describe the icon.

I poType: a string that gives the class name of the RPO that the file represents
(if any).

dat eCr eat ed: a Date object specifying when the entry was created.

sym i nkPat h: gives the path stored by a symlink. Present only for symlink
entries.

Possible errors include: ERR_BADPATH, ERR _NOPATH, and ERR_NOTDI R

getErrorString(err)
Converts an error number returned by a FileSystem function into an error message string
that may be displayed to users.

get Li nks$(t arget)
Retrieves a list of the traceable links to a node specified by t ar get . Traceable links
include hard links and smart links.

Returns {t ar get, success, [error], [HARD], [SHARE],

[ USER] } where HARD, SHARE and USER are each arrays of paths. t ar get may
be a path string or a reference to an RPO. If t ar get specifies an RPO that is not in the
filesystem, get Li nks$() willreturn {t ar get : t arget, success:true}.
(Note the absence of the HARD property in the return value.)

Possible errors include: ERR_BADARGS, ERR _BADCHARS, ERR BADPATH,
ERR_NOPATH, and ERR_NOTDI R

get Smart Li nkTar get $( pat h)
Retrieves the path to the target of the smart link with the specified pat h.

Returns { pat h, success, [error], [targetPath]}

Possible errors include: ERR_BADCHARS, ERR _BADPATH, ERR_NOPATH,
ERR_NOTDI R and ERR_NOTSMARTLI NK.

makeDi r ect or y$( pat h)
Makes a new directory at pat h, and generates all parent directories, if necessary.

Returns { pat h, success, [error], [object]}

Possible errors include: ERR_BADCHARS, ERR _BADPATH, and ERR_EXI STS.

128



makePri vat eURL( pat h)

Constructs an URL to a file in the current user's filesystem, where pat h is the full path
to the desired file. This URL will work only within the Desktop.com site, and only for the
current user. The target file must be an uploaded file (RawFile RPO type). Returns an
URL string.

nove$(ori gPat h, newPat h)
Moves the file or directory at Or i gPat h to newPat h. If newPat h is not absolute,
it will be assumed to be rooted in the same directory as the node being moved. If the
node has smart links other than through the specified or i gPat h, they are unaffected.
To determine if other links exist, call get Li nks$( ) . Symlinks referencing
or i gPat h will break without warning.

Note that the directory containing the desired target path must exist:
makeDi r ect or y$() is not called automatically to make parents of newPat h.

Returns { or i gPat h, newPat h, success, [error],
[ whi chPat h] }, where whi chPat h will be either "ORI G' or "NEW to indicate
the path returning the error.

Possible errors include: ERR_BADARGS, ERR _FI LENOTFQOUND (there is nothing at
ori gPat h), ERR_EXI STS, ERR_BADCHARS, ERR_BADPATH, ERR_NOPATH,
and ERR_NOTDI R

put $( pat h, obj)
Links an RPO into the filesystem. Obj is a reference to the RPO to be linked.

Returns { pat h, obj, success, [error]}
Possible errors include: ERR_BADCHARS, ERR_BADPATH, and ERR_EXI STS.

put Tenp$(path, prefix, obj)
Links an RPO into the filesystem, and generates a flename guaranteed to be unique.
pat h specifies a directory; pr ef i X (which may be an empty string) specifies initial
characters for the filename.

Returns { obj , path, success, [error]}, where pat his the full path.

Possible errors include: ERR_BADCHARS, ERR _BADPATH, ERR _NOPATH, and
ERR _NOTDI R

removeDi r ect or yWat cher $( key)
Removes a watcher established with addDi r ect or yWat cher $() . The key
returned by addDi r ect or yWat cher $() must be provided.

129



renoveDi rect or y$( pat h)

Removes the empty directory at pat h. To remove a directory that is not empty, first
unl i nk$() everything in it, then call r enroveDi rect ory$() .

Returns { pat h, success, [error]}

Possible errors include: ERR_BADARGS, ERR _BADCHARS, ERR _NOPATH,
ERR _NOTDI R, and ERR_NOTEMPTY.

set | con$(nodePat h, iconPat hType, iconPat h)

Establishes an icon for the node defined by nodePat h.i conPat hType indicates
the type of path to which i conPat h points. If i conPat h is "URL", then
i conPat hType is an URL to an image.

Passing nul | fori conPat hType causes any icon at the node to be removed.

Returns { nodePat h, i conPat hType, iconPath, success,
[error]}

Possible errors include: ERR_BADARGS, ERR_BADCHARS, ERR_BADPATH,
ERR_NOPATH (nodePat h does not exist), and ERR_NOTDI R (hodePat h
attempts to traverse a non-directory).

smart!link$(source, target)

sym i

Creates a smart link from Sour ce to t ar get , both of which are path strings.
Returns { source, target, success, [error]}

Possible errors include: ERR_BADARGS, ERR_BADCHARS, ERR_BADPATH,
ERR_NOPATH, ERR_NOTDI R, ERR_EXI STS, and ERR_NOSMART.

nk$(source, target)
Creates a symlink at SOUr ce which points to t ar get , both of which are path strings.

Returns { sour ce, target, success, [error]}

Possible errors include: ERR_BADARGS, ERR _BADCHARS, ERR _NOPATH,
ERR_NOTDI R and ERR_EXI STS.

unl i nk$( pat h)

130

Removes a link to a node. If a hard link is removed, and the node has any smart links,
the smart links are also removed.

Returns { pat h, success, [error]}



Possible errors include: ERR_BADARGS, ERR_BADCHARS, ERR_NOPATH,
ERR_NOTDI R and ERR_DI RECTCRY.

updat eDi rect or y$( pat h)
Updates the entries for the directory defined by pat h from the server. Call
updat eDi rect or y$() only if another user may have modified the contents of a
directory.

val i dat e( pat h)
Returns f al se if pat h contains unacceptable characters; t r ue if pat h is valid.

Errors Returned:

ERR_BADARGS: invalid argument(s).

ERR_BADCHARS: illegal characters in path.

ERR _BADPATH: syntax error in a specified path.

ERR_DI RECTORY: the path specifies a directory. Use r enoveDi r ect or y( ) instead.
ERR _EXI STS: there is already something at the specified source path.

ERR _FI LENOTFQOUND: the specified directory exists, but the specified filename within that
directory does not.

ERR _NOPATH: the directory containing the specified source path does not exist.

ERR _NOSMART: the target of a smartlink can only be a file or directory. A target path was
specified that points at something else.

ERR _NOTDI R: the specified source path attempts to traverse a non-directory.
ERR_NOTEMPTY: the specified directory is not empty.

ERR _NOTFI LE: the specified path points at something other than a file.
ERR_NOTSMARTLI NK: the path points to something that is not a smart link.

131



DTFileUpload

The DTFileUpload package allows users to upload files from their computers to the Desktop

server.

Classes

None.

Functions

upl oad$(target Di r Pat h)

132

Displays a dialog in which the user selects one or more files to upload from their
computer. t ar get Di r Pat h is a path string that specifies a directory in the user's
Desktop.com filesystem. The uploaded files will be placed in this directory, with names
that match the original names of the uploaded files as closely as possible.

Returns after the user closes the dialog. Returns { success, path, fil es}.
success isnormallyt r ue;if f al se, an error occurred. pat h is the

t ar get Di r Pat h specified, and f i | €S is an array of file name strings for the
uploaded files inserted into the user's Desktop.com filesystem. Note that the length of the
fi | es array may be zero, indicating that the user canceled the upload operation.



DTFlowLayoutManager

The DTFlowLayoutManager package defines the FlowLayoutManager class.

Classes

FlowLayoutManager

Arranges Components from left to right in wrapping rows. Line breaks are determined
automatically, but may also be manually set.

Inherits from DTLayoutManager.LayoutManager.

Constructor
Fl owLayout Manager ()

Methods

getHorizontalPadding() setHorizontalPadding(p)
getVerticalPadding() setVerticalPadding(p)
lineBreak(item)

get Hor i zont al Paddi ng()

Returns the horizontal padding in pixels.

get Verti cal Paddi ng()
Returns the vertical padding in pixels.

i neBreak(itemn
Adds a line break after a Component: either the Component with (zero-based) index
number i t €M or the last Component added if i t €Mis not specified.

set Hori zont al Paddi ng( p)

Sets the horizontal padding in pixels.

set Verti cal Paddi ng(p)
Sets the vertical padding in pixels.

Functions
None.

133



DTFontProber

The DTFontProber package defines the FontMetrics class.

Classes

FontMetrics

Encapsulates accurate measurements of various display size properties for a single font and font
size.

In addition to raw text metrics, information is available on the sizing of text-input HTML form
elements in the given font and font size. The two kinds of form elements are text fields (single-
line, used in DTTextInputField components) and text boxes (multi-line, used in
DTNativeTextinputBox components).

See also DTTextInputField, DTNativeTextinputBox, and DTStyle.
Inherits from DTObjectFramework.DTObject.
Constructor

None. (The FontMetrics class should not be instantiated directly. Pr obeFont $( ) will return
an instance of it.)

Methods

charCodeWidth(c) textboxRows(height)
charHeight() textboxHeight(rows)
charWidth(c) textboxWidth(cols)
getStringOfWidth(str, width) textfieldHeight()
stringWidth(s) textfieldSize(width)
textboxCols(width) textfieldWidth(size)

char CodeW dt h( c)
Returns the pixel width in this font of the character specified by C, an integer representing
an ASCII character code.

char Hei ght ()
Returns the pixel height of the font.

char Wdt h(c)
Returns the pixel width in this font of the first character in the string specified by C.

getString>O Wdt h(str, w dth)

Returns the largest left substring of the string St I with a pixel width in this font less than
or equal towi dt h.

134



stringWdth(s)
Returns the pixel width of the string S.

t ext boxCol s(w dt h)
Returns the maximum number of columns a text box using this font and font size may
have before its pixel width exceeds Wi dt h.

t ext boxRows( hei ght)
Returns the maximum number of rows a text box using this font and font size may have
before its pixel height exceeds hei ght .

t ext boxHei ght (r ows)
Returns the pixel height of a text box using this font and font size and having the number
of rows specified by I OWS.

t ext boxW dt h( col s)
Returns the pixel width of a text box using this font and font size and having the number
of columns specified by coOl S.

textfiel dHei ght ()
Returns the pixel height of a text field using this font and font size.

textfiel dSi ze(wi dth)
Returns the maximum size a text field using this font and font size may have before its
pixel width exceeds Wi dt h.

textfiel dWdth(size)
Returns the pixel width of a text field using this font and font size, and having the size
specified by Si ze.

Functions

Pr obeFont $(f ont _nane, font_size)
Creates and returns an instance of FontMetrics for the specified f ont _nane and
f ont _si ze. Both parameters are strings, and both are optional. Omitting either
parameter will yield metrics that use the browser default for the omitted parameter.

f ont _name may take any value that is valid for the f ont - f am | y attribute of a
CSS style. Recognized values include seri f, sans-seri f,cursi ve,

f ant asy, and nbonospace. f ont - si ze may take any value that is valid for the
f ont - si ze attribute of a CSS style. Recognized values include absolute sizes (XX-
smal | ,x-smal | ,smal | ,medi um | ar ge, x- | ar ge, xx- | ar ge), relative
sizes (smal | er, | ar ger), font lengths (any positive integer followed by pt or em,
and relative percentages (any positive integer followed by %).

135



CSS styles are encapsulated by the DTStyle.Style class, which allows fonts and font
sizes (and other attributes) to be specified for Components.

Note that the default fonts that browsers use for raw text, text fields, and text boxes differ
from one another. When f ont _nane and f ont _si ze are specified, these three
text types will use the same font.

136



DTGridLayoutConstraints

The DTGridLayoutConstraints package defines the GridLayoutConstraints class.

Classes

GridLayoutConstraints
Defines the parameters used to construct a grid layout.

Constructor
Gi dLayout Constrai nts()

Actions

None.

Methods

getAnchor() setAnchor(a)
getBreak() setBreak(b)
getFill() setDefaults()
getSpanX() setFill(fill)
getSpanY() setSpanX(s)
getWeightX() setSpanY(s)
getWeightY/() setWeightX(w)
lineBreak() setWeightY(w)
get Anchor ()

Returns the anchor which positions the component within its cell(s).

get Break()

Returns the location for a break.

getFill()
Returns the fill style, which defines how the component should be resized by the layout
manager in order to fill the space that it is in.

get SpanX()
Returns the horizontal span (the number of columns that the component crosses along
the X axis).

get SpanY()
Returns the vertical span (the number of columns that the component crosses along the
Y axis).

137



get Wi ght X()

Returns the horizontal (along the X axis) weight of the cell.

get Wi ght Y()
Returns the vertical (along the Y axis) weight of the cell.

I i neBreak()
Inserts a line break.

set Anchor (a)
Sets the anchor to position the component within its cell(s). Valid input includes:
GridLayoutConstraints. NORTH, GridLayoutConstraints.NORTH_EAST,
GridLayoutConstraints.EAST, GridLayoutConstraints.SOUTH_EAST,
GridLayoutConstraints. SOUTH, GridLayoutConstraints. SOUTH_WEST,
GridLayoutConstraints. WEST, GridLayoutConstraints.NORTH_WEST, and
GridLayoutConstraints. CENTER (default).

set Break(b)

Sets the location for a break.

set Defaul ts()
Resets all grid constraints to their default values.

setFill(fill)
Sets the fill style, which defines how the component should be resized by the layout
manager in order to fill the space that it is in. Valid input includes:
GridLayoutConstraints.FILL_HORIZONTAL, GridLayoutConstraints.FILL_VERTICAL,
GridLayoutConstraints.FILL_BOTH, and GridLayoutConstraints.FILL_NONE (default).

set SpanX( s)
Sets the horizontal span (the span along the X axis). Span defines the number of
columns that the components may cross, and must be a positive integer.

set SpanY(s)
Sets the vertical span (the span along the Y axis). Span defines the number of columns
that the components may cross, and must be a positive integer.

set Wi ght X(w)
Sets the horizontal weight (the weight along the X axis). Weight affects the size of the cell
in relation to the other cells in its row, and must be a number between 0 and 1.

set Wi ght Y(w)

Sets the vertical weight (the weight along the Y axis). Weight affects the size of the cell in
relation to the other cells in its row, and must be a number between 0 and 1.

Functions
None.

138



DTGridLayoutManager

The DTGridLayoutManager package defines the GridLayoutManager class

Classes

GridLayoutManager
The layout manager for grid components.

Grids differ from tables in that grids are more rigid. All columns must be the same width, and all
rows the same height across the grid.

Inherits from DTLayoutManager.LayoutManager.

Constructor

Gi dLayout Manager ()

Methods

addConponent (conponent, constraints)
Adds a component with the specified constraints.

| ayout Conponent s()
Lays out the components for the grid.

Functions
None.

139



DTHelpWindow

The DTHelpWindow package defines a Web pane-based help window.

Classes
None.

Functions

Hel pW ndow( parent App, title, hel pURL)
Defines a new Help window as a child window of the parent application, using the parent
application, the title for the new window, and the URL for the (initial) help page. On
Internet Explorer, the Help window consists of a web pane inside an application window,
with supporting navigation buttons. On Netscape Navigator, the Help window opens as a
new browser window (outside of the Desktop.com environment).

140



DTHTMLBox

The DTHTMLBox package defines the HTMLBox class.

Classes
HTMLBoXx

Defines a pane with dynamic (pseudo) HTML content. Content is distinguished from pure HTML
in that links may be set which activate programmatic events within an application. The links are
specified as <a name="name" action="action">. When the link is clicked, the action listener is
called with the "action" as a parameter.

The links specified by name and action must be created and defined by the developer. The action
they specify is then passed to action listeners when the links are clicked.

Inherits from DTComponent.Component.

Constructor

HTM_Box( ht m )
ht M sets the HTML source file to be shown in the box

Actions

| i nk: an action was generated after a link was clicked.
MDUSe: an action was generated due to a mouse event.
ot her : an action was generated for some other reason.

Methods
getActionType() setHTML(html)
getHTML()

get Acti onType()
Returns the type of action over a link. Possible values includes | i nk, nouse, and
ot her . This method should be called only after receiving an action from the HTMLBoOX.

get HTML()
Returns the HTML file for the frame.

set HTML(ht m )
Sets the HTML file for the frame.

Functions
None.

141



DTHTMLBrowser

The DTHTML package defines the HTMLBrowser class.

Classes
HTMLBrowser

Opens a new browser window within the Desktop.com environment, which allow users to surf
pages consisting of panes or components. Links within the pages require action listeners to
trigger browser updates.

Inherits from DTPane.Pane.

Constructor

HTMLBox( ht m )

Actions
None.

Methods

addPage(comp) home()

back() setSize(width, height)
forward()

addPage( conp)
Adds and displays a new page to the HTMLBrowser. The page may consist of panes or
components.

back()

Displays the previous page in the queue. If no such page exists, no action is taken.

forward()
Displays the next page in the queue. If no such page exists, no action is taken.

honme()
Displays the home page, the first page the HTML browser receives using the
addPage() method, in the browser.

set Si ze(wi dt h, height)
Sets the width and height for the browser window in pixels.

Functions
None.

142



DTIlconsView

The DTlconsView package defines the IconsView class.

Classes

IconsView

Defines a scroll pane in which icons composed of an image and associated text may be placed
and arranged by the user. The window in which these icons are placed has a scrollbar on both its

right and bottom sides. Users may drag and arrange icons anywhere within the scroll pane.

Inherits from DTScrollPane.ScrollPane.

Constructor
| consView |l m

| mis the layout manager to be associated with the component.
Actions
None.
Methods
addNode(node, width, height, align, tooltip)  removeNode()
enableDrag() setColor()
movelcon(event) setSelectedNode(node)

addNode(node, wi dth, height, align, tooltip)
Adds an icon to the pane, defined by its Wi dt h; hei ght ; tooltip text; and text
alignment, which may be cent er , | eft,orri ght . The icon is defined using
node. i con;the textis node. dat a. t ext .

clear()
Removes all components from the pane except for the focus indicator.

enabl eDr ag()
Enables dragging of icons within the pane: t r ue if draggable; f al se if not.

novel con(event)
Sets an icon to move in response to the defined event.

r enoveNode()
Removes the specified node. Generates node_r enoved action for all action
listeners.

143



set Col or ()

Sets the color for the text displayed in the icon, defined as a 6-digit hex string which
begins with a "#" character, such as "#00CC99."

set Sel ect edNode( node)
Sets the node that should be selected. Generates a Sel ect ed action for the action
listeners if the node is not nul | .

Functions
None.

144



DTImageArea

The DTImageArea package defines the ImageArea class.

Classes

ImageArea

Defines a component in which images may be placed. Three display modes are supported:

pl ai n, which displays the image in its absolute size, with no margins; cent er ed, which
displays the image in its absolute size, but allows the ImageArea component's size to be set,
leaving any difference as a margin; and St r et ch, which forces the image dimensions to the
specified size.

Inherits from DTComponent.Component.

Constructor
| mmgeAr ea(i magePat h, tool Ti p, node)
i magePat h defines the path to the image to be displayed; t 0ol Ti p sets the ALT

text to be displayed during mouse-over events; and npde sets the display mode:
PLAI N, CENTER, or STRETCH.

Actions
cl i cked: the icon has been clicked (including clicks in margins when in centered mode).

Methods

getBorder() setimage(imagePath)
getimage() setMode(hewMode)
getMode() setSize(w, h)
getToolTip() setToolTip(toolTip)

setBorder(thickness)

get Border ()
Returns the border thickness in pixels.

get | mage()
Returns the absolute path string for the image.

get Mode()
Returns the display mode.

get Tool Ti p()

Returns the text that appears when the mouse is over the image (the ALT text).

145



set Border ()
Sets the border thickness in pixels. Default is 0.

set | mage(i nagePat h)
Sets the absolute path string for the image.

set Mode( newivbde)
Sets the display mode. Possible values include pl ai n (default), cent er ed, and
stretch.

setSize(w, h)
Sets the width and height for the image area. set Si ze() has no immediate effect in
plain mode, since plain mode images are naturally sized, but will be used for all
subsequent set Mbde( ) calls. If an image area is resized to a smaller size, be certain
to repaint any parent objects behind it in the window.

set Tool Ti p(tool Ti p)
Sets the text string that appears when the mouse is over the image (the ALT text).

Functions
None.

146



DTImageButton

The DTImageButton package defines the DTImageButton class.

Classes

ImageButton

Defines a button Component, which may include up to three images: one each for inactive,
mouseover, and mouse clicked events.

Inherits from DTComponent.Component in Netscape Navigator; and DTImageArea.lImageArea on
Internet Explorer.

Constructor
| mageBut t on( i mages)
I mages is an array of images. The images array is indexed as [ | nacti ve,

nouseover, nousedown] . If the mouseover or mousedown elements are
undefined, the inactive image substitutes for them.

Actions

None.

Methods

handleMouseEvent(e) setimage(image)
setClicked(isClicked) setimages(images)

handl eMouseEvent (e)
Called when a mouse event is received.

seticked(isCicked)
Ifi sCl i ckedistrue, sets the image button to its defined Tous edown
appearance; if f al se, setsittoitsi nact i ve appearance.

set | mage(i mage)
Sets the default image to be used for the button. i mage is an URL string, as for the
DTButton constructor.

set | mages(i mages)
Sets the images to be used for the button. I MRQES is an array of URL strings, with the
URL format as for the DTButton constructor, indexed as [ i hacti ve,
nouseover, nousedown].

Functions
None.

147



DTImageResize

The DTImageResize package defines an interface to a server-side utility that creates thumbnails
of uploaded image files.

Classes
None.

Functions

resi ze$(source _path, dest path, x_max, y_max)
Creates a thumbnail image. sour ce_pat h and dest _pat h are path strings that
specify the locations of the source and destination files, respectively, in the current user's
filesystem. The source file must be an uploaded GIF or JPEG image file, and there must
not be a anything located at the destination path. X_nmaX and y__NBX are positive
integers that specify the maximum dimensions for the thumbnail. The thumbnail will be of
the same file type as the source file.

Returns an object with named properties. If the property success ist r ue, the
operation succeeded and the remaining properties are meaningful; if not, the operation
failed. The remaining properties X_SOUr C€ and Y__SOuUr ce define the pixel size of
the source image, and X_dest andy_dest define the pixel size of the thumbnail.

148



DTIncrSlider

The DTIncrSlider package defines an incremental slider widget, as distinct from a continuous
slider, which DTSlider (the parent class) provides.

Classes

IncrSlider
Defines an incremental slider widget.

Incremental sliders take on discrete values of the form (min + n * incr), where n takes on positive
integer values and incr is an increment value specified by the widget's calling code.

Dragging and bumping behaviors are different for an incremental slider than for a continuous
slider. Dragging jumps among the allowable quantified values, rather than sliding smoothly; and
bumping jumps by increments, rather than by a fixed fraction of the slider's total travel.

Incremental sliders are displayed with tick marks to indicate the allowed slider-button center
positions. Labels may be provided either for the first and last ticks or for all ticks. Ticks and labels
appear on the bottom side of a horizontal slider, and on the right side of a vertical slider.

Either set Num ncrenent s() orset I ncrement Si ze() must be called during
initialization of an incremental slider. If both are called, the second call is used and the first
ignored. There must be a positive integer number of increments, and increment size must exactly
divide the difference between min and max into equal segments.

Increment and tick-label setup is immutable.

When set Si ze() is called on a horizontal incremental slider with tick labels, the width
argument will be used to size and position all sub-components under the assumption that the tick
label text at the two endpoints does not extend beyond the boundary of the slider's background
pane.

Note that long text strings may cause the labels to be truncated. To prevent this, set the slider's

| engt hPaddi ng property to the number of extra pixels required to accommodate the labels.
| engt hPaddi ng specifies the total number of extra pixels, not the number of pixels per end
(half of the total). | engt hPaddi ng must be set to an even number or incorrect behavior will
result.

Inherits from DTSlider.Slider.

Constructor

I ncr Slider()
Actions

None.

149



Methods

getincrementSize() setNumIncrements(n)
getNumincrements() setTickLabels(labels)
setincrementSize(incrSize) setValue(value)

getlncrenent Si ze()
Returns the size of the increment in pixels.

get Numl ncrenent s()
Returns the number of increments for the slider bar.

setlncrenent Si ze(incrSi ze)
Sets the size of the increment in pixels.

set Nuni ncr enent s(n)
Sets the number of increments for the slider bar. Note that N specifies the number of
segments, not the number of possible values (ticks), which is one greater than the
number of segments.

set Ti ckLabel s(I| abel s)
Sets the labels to be used for the tick marks. | abel s should be an array of strings. If
the length of this array is 2, the two strings will be used for the lowest- and highest-valued
ticks. If the length is equal to get Num ncr enment s() + 1, the strings will be used
successively for all ticks. An array of any other length will be ignored.

set Val ue(val ue)
The argument to Set Val ue() will be silently rounded to the nearest allowable value.
Callget Val ue() to determine the effects of rounding.

Functions
None.

150



DTKeyEvent

The DTKeyEvent package defines the KeyEvent class.

Classes

KeyEvent

The DTKeyEvent class defines a list of constants which allow you to grab almost every available
keyboard input as an event.

Constructor

KeyEvent ()

Constants
KeyEvent constants are defined using the syntax KeyEvent . KVK_key. Such as:

KeyEvent . kVK 2
KeyEvent . KVK_S
KeyEvent . kVK_PERI OD

For a complete list of defined constants, see Appendix Il: KeyEvent Constants.

Functions
None.

151



DTLabelledTextBox

The DTLabelledTextBox package defines the LabelledTextBox class.

Classes
LabelledTextBox

Defines a window object which contains a label and a text input field. The developer-defined label
is placed to the left of the text input field, which may contain text when the box is first displayed.

Inherits from DTPane.Pane.

Constructor

Label | edText Box( | abel, entry_si ze)
| abel defines the text to be used for the label; and ent r y_si ze defines the size of
the TextInputField in characters.

Actions
None.

Methods

getText() setBackgroundColor(color)
getTextinputField() setText(text)
getTextLabel() setTextColor(color)
makeBold()

get Text ()
Returns the text from the user input field.

get Text I nput Fi el d()
Returns the Text | nput Fi el d object.

get Text Label ()
Returns the Text Label object.

makeBol d()
Makes the label text bold

set Backgr oundCol or (col or)
Sets the background color for the box. COl Or is defined as a 6-digit hex string which
begins with a "#" character, such as "#00CC99."

set Text (text)
Sets the text for the user input field.

152



set Text Col or (col or)

Sets the text color for the box. COl Or is defined as a 6-digit hex string which begins
with a "#" character, such as "#00CC99."

Functions
None.

153



DTLayoutManager

The DTLayoutManager package defines the abstract base class for Desktop.com layout
managers. All layout managers are a subclass of the LayoutManager class.

Classes

LayoutManager

Defines a layout manager: an object associated with a Container (see DTContainer.Container),
which controls the size and/or position of the Container and/or its children.

To use a layout manager, instantiate the appropriate LayoutManager subclass and pass the
resulting object to either the constructor or the Set Layout Manager () method of the
relevant Container. Be certain to instantiate a separate layout manager object for each container,
and do not share layout managers between containers.

Some layout managers function automatically, while others require configuration, either before or
during the process of adding Components to the associated Container. LayoutManager subclass
methods enable layout manager configuration.

Most layout managers' behavior is affected by the order in which Components are added to the
associated Container. Once components have been added to a container, there is no way to
change their order other than to remove and then replace all Components in the desired order.
After all Components have been added to the layout manager’s associated Container, layout will
be performed each time the Container is resized. Layouts may also be forced by calling
Container.doLayout().

If you are using a layout manager and seeing strange results, try calling the set Caut i ous()
method of LayoutManager. By default, layout managers operate in non-cautious mode;

set Caut i ous(true) wil force them into cautious mode, which is more conservative but
slightly less efficient.

To implement a new kind of layout manager, either generic or single-purpose, create a subclass
of LayoutManager and implement a single method in that class called

| ayout Conponent s( ) . This method will be called each time layout is to be performed,
such as when the layout manager’s associated Container is resized, or an explicit call is made to
Cont ai ner . doLayout () . A layout manager must contain the two class-default properties
NEED_CONTAINER_SIZE and NEED_COMPONENT_SIZE. (To set a class-default property,
use DTObjectFramework.SetDefault().) If the layout manager requires a defined size for the
associated Container before | ayout Conponent s() will work correctly (i.e., if

| ayout Conponent s() callst hi s. cont ai ner. get Si ze()), set
NEED_CONTAINER_SIZE to t r ue; otherwise setitto f al se. If| ayout Conponent s()
needs a defined size for any child Components, set NEED_COMPONENT_SIZE tot r ue;
otherwise setitto f al se.

154



within | ayout Conponent s( ), you may query and operate upon the container and items
properties of the this object. CONt ai ner is a reference to the associated Container object, and
items is an array containing a reference to each Component in the associated Container.

If a layout manager subclass seems always to need a call to set Caut i ous(true) to make
it work correctly, set the class-default property caut i ous tot r ue.

Inherits from DTObjectFramework.DTObject.

Constructor
Layout Manager ()

Methods

set Caut i ous(cauti ous)
Sets the layout mode to cautious. If t I Ue, forces the layout manager into cautious
mode; if f al se, into non-cautious mode. Cautious mode draws the components before

arranging them; non-cautious arranges, then draws the components, which is faster, but
may engender visual mistakes.

Functions
None.

155



DTLinkArea

The DTLinkArea package defines the LinkArea class.

Classes
LinkArea

Defines a component to contain the hypertext link.
Inherits from DTTextBox.TextBox.

Constructor

Li nkArea(text, alignnent)
Sets the t ext to be linked, and its al i gnment within the component.

Actions
None.

Methods

set Cb(ch)

Sets the callback, which is called when the link is clicked.

Functions
None.

156



DTListBox

The DTListBox package defines the ListBox class.
Classes
ListBox

A scrolling list of text items.

Inherits from DTScrollPane.ScrollPane.

Constructor

Li st Box()

Actions

None.

Methods

appendListltem(text, data) removeListlitem(index)
clearListltems() setltemData(index, data)
getltemData(index) setltemText(index, text)
getltemText(index) setSelectedData(data)
getSelectedData() setSelectedltem(index)
getSelecteditem() setSelectedText(text)
getSelectedText()

appendLi stlten(text, data)
Adds at ext item to the end of the list. dat a is an optional data element that may be
stored with the list item. Dat a will be returned to be used when events are fired.

clearListltens()
Removes all the items from the list.

get |l tenDat a(i ndex)
Returns the data associated with the item defined by i ndex, or nul | if that index item
does not exist.

get | t emlext (i ndex)
Returns the text associated with the item defined by i ndex, or nul | if that index item
does not exist.

get Sel ect edDat a()
Returns the data associated with the item that is currently selected, or nul | if nothing is
selected.

157



get Sel ectedltem)
Returns the index number of the item that is currently selected, or nul | if nothing is
selected.

set Sel ect edText (t ext)
Returns the text of the item that is currently selected, or nul | if nothing is selected.

renmoveli stltem(i ndex)
Removes the item specified by i ndex from the list.

setltenDat a(i ndex, data)
Sets the data to be associated with the item defined by i ndeX, or nul | if that index
item does not exist.

set | temlext (i ndex, text)

Sets the text to be associated with the item defined by i ndex, or nul | if that index
item does not exist.

set Sel ect edDat a( dat a)

Sets the data to be associated with the item that is currently selected, or nul | if nothing
is selected.

set Sel ect edl t en{i ndex)

Sets the index number of the item that is currently selected, or nul | if nothing is
selected.

set Sel ect edText (t ext)
Sets the text of the item that is currently selected, or nul | if nothing is selected.

Functions
None.

158



DTMenu

The DTMenu package defines the Menu class.

Classes

Menu
Defines a pop-up or pull-down menu widget.

Menus are made up of three types of entries: items, selectable text entries; submenus, text
entries that cause additional menus to cascade; and separators, horizontal markers that separate
categories of entries. Iltems and sub-menus always display text, and may include an icon to the
left of the text.

Menus may be created in two ways: by entry list and incrementally. To use an entry list, pass an
array of entry definitions to the Menu constructor to define any number of items, separators, and
sub-menus with a single call. To set up a menu incrementally, make one call to addl t en{ ),
addSepar at or (), oraddSubnmenu() for each entry to be added. After menu
construction, entries may be added or removed incrementally at any time. It is also possible to
enable and disable individual entries at any time, and change the text or icon of any entry.

All entry manipulation is keyed by entry IDs, which must be supplied by callers when adding
entries. IDs may be any string or number. They must never be nul | , as nul | is used to
indicate that no item is selected. IDs must always be unique within a Menu and all its submenus,
or incorrect behavior will result. The uniqueness of newly supplied IDs is checked in some
circumstances, but not all.

When an item is selected in a menu or any of its submenus, the menu disappears and a

sel ect ed action is emitted. There are two ways to listen for this action: with an action listener
applied to the Menu as a whole, which calls get Sel ect edl t eml d() to determine what
was selected; or by applying action listeners to individual items using

setltenli stener().

Do not insert a Menu into a Container as a child component: Menus are automatically parented
by the screen.

Inherits from DTContainer.Container.

Constructor
Menu(app, entrylList)
app (optional) specifies the application to be associated with the menu.

ent ryLi st is also optional; if omitted, an empty menu is created. If given, it contains
an ordered array of objects; each of which specifies an entry using the following named
properties:

i d: specifies the ID of the entry. Required.

159



separ at or :if present and t r ue, the entry represents a separator, and all
properties except i d are ignored.
Menu: if this property is present, the entry is a submenu, and this property

provides a reference to the submenu definition, which follows the same format as
entryList itself. If not present, the entry is an item.

t ext : specifies the text to be displayed for the item. Required for an item or
submenu.

i con: if present, specifies the path of the icon to display to the left of the entry.
enabl ed: if present, specifies whether the entry is initially enabled or not:
t rue if enabled; f al se if not. If absent, the entry will be enabled.

| i st ener :if the entry is an item and this property is present, it provides the
name of a listener function to be called when the item is selected. The application
object established with the app argument, or with Set App( ) , will be assumed
to contain a listener method by this name.

Actions
sel ect ed: an item has been selected by the user.

Methods

addltem(id, text, iconPath, listener, enabled, beforeld) reinit(entryList)
addSeparator(id, beforeld) removeEntry(id)
addSubMenu(id, text, menu, iconPath, enabled, beforeld) setApp(app)
advanceSelection(direction) setBottomAnchor(left, bottom)
cascade(direction) setEntryEnabled(id, enabled)
clearBottomAnchor() setEntrylcon(id, iconPath)
getEntries() setEntryText(id, text)
getEntryText(id) setltemListener(id, listener)
getMenu(id) setLazyEvaluator(func, alwaysCall)
getParentage() setLocation()
getSelectedltemlId() setSelectionToEnd(whichEnd)
handleSelection() setVisible(visible)
isEntryEnabled(id) undisplay()

Note that all methods that take an I d parameter are recursive: they will find a specified ID
anywhere in the top-level menu or in any submenus.

Note also that any method which changes the appearance of a menu, such as set Text () or
addSepar at or () , will not take effect until the menu is hidden and redrawn.

addlten(id, text, iconPath, listener, enabled, beforeld)
Adds an item to the menu, with the given i d and t ext . i conPat h (optional) defines
an icon to be placed to the left of the text entry. | i St ener (optional) provides the
name of an action listener to be associated with the menu item. enabl ed (optional)
defines whether the submenu is enabled (defaultis t r ue). bef or el d (optional)
specifies the ID of an existing entry before which the given entry is to be inserted. If
bef or el d is omitted, the entry is inserted at the end of the top level menu.

160



addSeparator (id, beforeld)
Adds a separator to the menu with the specified i d. bef or el d (optional) specifies the

ID of an existing entry before which the given entry is to be inserted. If bef or el d is
omitted, the entry is inserted at the end of the top level menu.

addSubMenu(i d, text, nenu, iconPath, enabl ed, beforeld)
Adds a submenu entry with the given t ext and i d. nenu is a reference to the
submenu to be associated with the entry. i conPat h (optional) defines an icon to be
placed to the left of the text entry. enabl ed (optional) defines whether the submenu is
enabled. bef or el d (optional) specifies the ID of an existing entry before which the
given entry is to be inserted. If bef or el d is omitted, the entry is inserted at the end of
the top level menu.

advanceSel ection(direction)
Advances the selection through the menu entries in the specified direction (- 1 for

backwards; 1 for forwards). This method is circular, skips selectors, and does not skip
disabled entries.

cascade(direction)
Opens or closes submenus as appropriate. cascade( 1) opens a submenu if the
selection is on a submenu entry and no submenu is visible yet. cascade( - 1) closes
the submenu if the selection is on a submenu entry and the submenu from that entry is
visible. Calls to cascade( ) are recursive; cascade( ) will perform multiple levels of
cascade display and undisplay.

Returns t r ue if it did anything; f al se if no action was taken.

cl ear Bot t omAnchor ()
Clears the bottom anchor designation of a menu. To change a Menu's anchoring from
bottom to top, call this method, then call set Locat i on() .

getEntries()
Returns an array representing all the entries in the menu. Each element in the array is an
object with the following properties:

i d: the ID of the entry. Always present.

t ype: the type of entry. Valid values are Menu.ENTRY_ITEM, Menu.ENTRY_SEP, and
Menu.ENTRY_SUB. Always present.

t ext : the display text for the entry. Present for items and submenus.

i con: the icon path for the entry. May be nul | . Present for items and submenus.
enabl ed: defines whether the entry is enabled. Present for items and submenus.
MeNu: a reference to the entry's submenu object. Present for submenus.

get EntryText (i d)
Returns the text of the entry with the specified i d.

161



get Menu(i d)

Returns a reference to the menu associated with the entry that has the specified i d.

get Par ent age()
Returns the position of a submenu within its parent menu, if one exists. Returns nul | if
the menu is not a submenu. If it is a submenu, returns an object with the properties
NMENU, a reference to the parent menu, and i d, the ID of the parent Menu entry from
which the Menu cascades.

get Sel ectedltem d()
Returns the selected item's ID. Call this method in response to the sel ect ed action.

handl eSel ecti on()
Causes the menu to behave as though it had received a mouse-up event. If an item is
selected and enabled, the menu will disappear and emit the Sel ect ed action.

i sEnt ryEnabl ed(i d)

Returns a Boolean indicating whether the entry with the specified I d is enabled.

reinit(entryList)
Clears all entries from the Menu, and repopulates the Menu with the entries defined in
ent ryLi st (which follows the same format as the ent r yLi St parameter to the
Menu constructor).

removeEntry(id)
Removes the entry with the specified I d from the menu.

set App(app)

Sets the application to be associated with the menu. This is the application object that will
be assumed to contain methods with the names specified inset | t enLi st ener (),
and the listener properties in entry lists passed to the constructor andr ei ni t () .

set Bott omAnchor (I eft, bottomn)
Sets bottom-left screen-relative pixel coordinates for a Menu.

set Ent ryEnabl ed(i d, enabl ed)
Enables the entry with the specified i d if enabl ed ist r ue; disables the entry if
fal se.

setEntrylcon(id, iconPath)
Sets an icon to be displayed to the left of the entry with the specified i d. Icons should be
exactly Menu.ICON_WIDTH by Menu.ICON_HEIGHT pixels.

setEntryText (id, text)
Sets the text of the entry with the specified i d.

162



setltenlistener(id, |listener)
Associates the specified | | St ener (the name of a method in the application specified
by the app parameter to the constructor, or with set App( ) ) with the menu item that
has the specified | d.

set LazyEval uat or (func, alwaysCall)
Allows the Menu's entries to be determined dynamically by an evaluation function when
the menu is about to be displayed. The evaluation function may be specified with a direct
function reference; with two arguments, the first an object and the second a method
name; or with a method-name string, in which case the method will be assumed to exist
within the application object specified in the constructor or with Set App( ) . The
evaluation function must provide two parameters: the first receives a reference to the
menu object that the evaluation function should populate; the second receives a callback
that must be called when the menu is complete. (Declare the evaluation function as a
blocking "$" function.) When the evaluation function is called, the menu will be empty.

If al waysCal | istr ue, the evaluation function will be called each time the menu is
about to be redisplayed (that is, made visible after a call to undi spl ay()). If

al waysCal | isfal seornul |, the content of the menu will be cached and reused
without update at redisplay.

set Locati on()
Sets the top-left screen-relative pixel coordinates for a Menu.

set Sel ecti onToEnd( whi chEnd)
Moves the selection to the end of the Menu. Whi chENnd is - 1 for the first entry, or 1 for

the last. Note that entries begin at the top and proceed to the bottom, regardless of
whether the anchoring component or point is at the top or the bottom of the menu.

set Vi si bl e(vi si bl e)
Called to show a Menu initially, or to toggle visibility. In most cases, undi spl ay()
will provide better performance than set Vi si bl e(f al se) . However, if multiple
menus descend from a single anchor component, such as a menu bar, call
set Vi si bl e(f al se) to allow the user to move rapidly between menus.

undi spl ay()

Removes a menu's screen components. Called automatically when a selection occurs.

Functions
None.

163



DTMenuBar

The MenuBar class defines a menu bar object, which is a horizontal array of buttons, each of
which serves to anchor a menu. (Menu bars are normally created as part of AppWindows using
the set MenuBar () method.)

Classes

MenuBar

Encapsulates a menu bar component: a horizontal array of menu anchors, with an associated
Menu component for each.

In a menu bar, both the menus and their entries are keyed by ID. It is important to ensure that all
items in an menu bar have a unique ID. This uniqueness is not checked, and it is the caller's

responsibility to ensure it. As with menus, IDs may take any string or numeric value. nul | is
never a valid ID.

There are two ways to interact with a menu bar: Use get Menu( ) to retrieve a reference to a
particular menu, then manipulate that menu as a whole; or use the passthrough mutators and
accessors to manipulate menu entries based solely on IDs.

Menu bars automatically determine their own height and width. Calling set Si ze() has no
effect on a MenuBar.

Many of the methods of MenuBar are passthrough methods, which call their equivalents in the
Menu class. All passthrough methods are keyed by entry ID. The MenuBar searches all of its
Menus for the specified ID, then calls the equivalent method on the Menu that contains the
specified ID. (This is one reason why it is important to ensure that entry IDs in Menus are unique
across all Menus in a MenuBar.) The passthrough methods are not documented in detail here:
see the equivalent methods of DTMenu for details.

See DTMenu for more information.
Inherits from DTContainer.Container.

Constructor

MenuBar (app, entrylList)
app is an optional argument that specifies the Application object with which the
MenuBar is to be associated. The use of this parameter is equivalent to calling
set App( app) . This is only relevant when using "listener" attributes for menu items.
ent ryLi st is also optional; if absent or nul | , an empty menu bar is created. If
present, ent r yLi st is an array of objects, in which each object specifies a menu, and

the order of objects specifies the order of menus. Each object specifies its entry using the
following named properties:

i d: specifies the ID of the menu. Required.
t ext : specifies the text to be displayed with the menu anchor. Required.

164



Menu: defines a menu. Follows the format of the entryList argument to the
Menu() constructor. Required.

enabl ed: if present, specifies whether the menu is initially enabled or not:
t r ue if enabled; f al se if not. If absent, the menu will be enabled.

Actions
sel ect ed: a menu item has been clicked.

Note that there are three ways to listen for selected actions: by adding an action listener
to a MenuBar; by adding an action listener to an individual menu; or by calling

set |t enli st ener (). When using more than one of these, be certain not to
respond to the same action twice.

Methods

addMenu(id, text, menu, enabled, beforeld) reinit(entryList)

getMenu(id) removeMenu(id)
getSelecteditemld() setApp(app)
isEntryEnabled(id) setMenuEnabled(id, enabled)
isMenuEnabled(id) setMenuText(id, text)
peekSize()

Passthrough Methods (see Menu for more complete information)

addltem(id, text, iconPath, enabled, beforeld) removeEntry(id)
addSeparator(id, beforeld) setEntryEnabled(id, enabled)
addSubMenu(id, text, menu, iconPath, enabled, beforeld) setEntrylcon(id, iconPath)
getEntryText(id) setEntryText(id, text)
isEntryEnabled(id) setltemListener(id, listener)

addMenu(i d, text, nmenu, enabl ed, beforeld)
Adds an anchor and associated "ENU to a MenuBar, with the specified i d and t ext .
(i d must be unique across all menus and menu entries in the MenuBar.) enabl ed
(optional) specifies whether the new anchor is to be enabled: t r ue if enabled; f al se

if not. If absent, the anchor will be enabled. bef or el d (optional) specifies the ID of an
anchor before which the new anchor is to be inserted. If absent, the new anchor will be
placed at the end of the MenuBar.

get Menu(i d)

Returns a reference to the Menu specified by i d, or nul | if there is no such Menu.

get Sel ectedl tem d()
Returns the ID of the selected item. Similar to Menu. get Sel ectedl tem d() .
Call this method in response to a Sel ect ed event emitted from the MenuBar.

peekSi ze()
Returns an object { W, h} in which w and h indicate what the width and height of the
MenuBar are or will be, in pixels, even if the MenuBar has yet to be painted. Be certain to
add all Menus to a MenuBar before relying on the width reported by peek Si ze() .

165



reinit(entryList)
Resets and reinitializes a MenuBar's content with ent r yLi St : a menu bar definition
that follows the same structure as the ent r yLi St parameter to the MenuBar
constructor. (Similar to Menu. reinit ().

removeMenu(i d)
Removes the anchor specified by | d, and its associated menu.

set App(app)

Sets the Application object to be associated with a MenuBar. This method is relevant only
when using "listener" attributes for menu items. (Similar to Menu. set App() .)

set MenuEnabl ed(i d, enabl ed)

Changes whether the anchor specified by I d is enabled to respond to the mouse:
enabl edist r ue if enabled; f al se if not.

set MenuText (i d, text)
Changes the text displayed anchor specified by i d.

Functions

i sMenuEnabl ed(i d)
Returns whether the Menu specified by id is enabled: t r ue if enabled; f al se if not
enabled, or if no Menu with the specified i d was found.

166



DTNamedCallback

The DTNamedCallback package defines a Callback with a unique name, by which it may be
referenced. This package is useful if you cannot pass the callback object by reference, but you
can pass a string. This package is seldom needed.

Classes
NamedCallback

Defines a callback.
Inherits from DTCallback.Callback.

Constructor
NanmedCal | back(argl, arg2, arg3)
May be called in four different ways:
cb = new NanmedCal | back(func);
cb = new NanmedCal | back(func, data);

cb = new NanedCal | back(obj, nethod _nane);

cb = new NanedCal | back(obj, nethod_nane, data);
Methods
get Nane()

Returns the callback's name.

Functions

Cal | (nane, argq)

Invokes a NamedCallback by name.

For get (ch)
Unregisters the callback's name from the global NamedCallback namespace when it is
no longer needed.

167



DTNativeComponent

The DTNativeComponent package defines the NativeComponent class.

Classes

NativeComponent

An abstract base class for DTAPI Components that are implemented using HTML form elements.

Constructor
None. Do not instantiate this class directly.

Actions
None.

Functions
None.

168



DTNativeTextlnputBox

The DTNativeTextinputBox package defines the NativeTextInputBox class.

Classes

NativeTextinputBox

Defines a text input box, with a specified number of rows and columns into which users may type

text entries, implemented using the browser's native HTML text area component.

Inherits from DTNativeComponent.NativeComponent.

Constructor

Nat i veText | nput Box(text, cols, rows)
t ext sets the text to appear in the box, beneath the specified number of column and

row input fields.

Actions
None.

Methods

getText() setSize(w, h)
setCols(cols) setText(text)
setRows(rows) setWrap(wrap)

get Text ()
Returns the text from the input box.

set Col s(col s)
Sets the number of columns for the box.

set Rows(r ows)
Sets the number of rows for the box.

setSize(w, h)
Sets the width and height of the box in pixels.

set Text (text)
Sets the text for the input box.

set Wap(w ap)

Sets whether the text should automatically wrap.

Functions
None.

169



DTObjectStore

The DTObjectStore package defines the Persistent and Root Persistent Object classes

For more information, see Persistence.

Classes

PersistentObject

Defines an object with properties that may be stored on the Desktop.com server. These
properties may be numbers, strings, Booleans, or references to other POs.

All Persistent Objects are identified by a three-number tuple. The first number is the user ID, the
second is the RPO ID, and the third is the child ID. Each user has their own user ID, and all of
that person's POs start with their user ID as the first number in the tuple. The second number
identifies an Object Group. Every PO within that group has the same first and second number in
the tuple. The third number identifies the particular PO within the group, with the RPO always
having a child ID of 0.

Inherits from DTObjectFramework.DTObject.

Constructor

Constructor: Persistent Object(argl, arg2)
ar g1 defines the user ID, and ar g2 the Root Persistent Object with which this PO will
be associated.
This constructor may be called in three different ways:
new Per si st ent Cbj ect (PORef, o0bj ) creates a PO using PORef and obj,
which recreates the PO on the client side.
new Per si st ent Obj ect ( PO) creates a NEW PO in the same RPO as PO.

new Per si st ent Cbj ect ( PORef ) creates NEW PO using PORef.

It is important to note that this constructor should pass its two arguments to the PersistentObject
constructor, which will in turn call const ruct () orr est or e$(), as appropriate.

Methods

childArray() isDeleted()
children() keyArray()
deleteKey(k) keyExists(k)
deleteSelf() keys()
fetchChild$(key) nonChildKeyArray()
fetchChildren$() nonChildKeys()
fetchChildrenRecursive$() set(key, value)

170



chil dArray()

Returns an array with the names of all properties that refer to other
Per si st ent Qbj ect s.

children()

Returns a hash with the names of all properties that refer to other
Per si st ent Qbj ect s.

del et eKey( k)
Deletes the property with key K.

del eteSel f ()
Deletes the persistent object itself.

fetchChi | d$(key)

Asynchronously fetches the object for field name key and then calls the callback.
Returns { nane, success, error}.

fetchChil dren$()
Asynchronously fetches all child objects of this Persistent Object from the server, then
calls the callback (callback argument is { success, error, errors}).
Because only some child objects may fail, the €r r Or S property of the callback's
argument object is a hash with the child name as the key and the error as the value.

f et chChi | drenRecur si ve$()

Asynchronously fetches all child objects, and their children recursively, then calls the
callback. Because only some child objects may fail, the errors property of the callback's
ar g object is a hash with the child name as the key and the error as the value. Because
fetching is recursive, error values in the errors hash may themselves be error objects of
children. This indicates that the child itself came down fine, but one or more of its
descendants did not.

Returns { success, error, errors}.Ifsuccessisfal se,theerror
property is a number, and the €r r Or S property is an object.

i sDel eted()
Returns t r ue if the object is deleted; f al se if not.

keyArray()

Returns an array with all of the persistent property names.

keyExi st s(k)
Returns t r ue if the property specified by its key (K) has been set; f al se if not.

171



keys()
Returns a hash with all of the persistent property names. This is meant to be used as:

for(var k in po.keys()) { ... }

nonChi | dKeyArray()
Return an array with the names of all properties that do not refer to
Per si st ent Qbj ect s.

nonChi | dkeys()
Return a hash with the names of all properties that do not refer to
Per si st ent Qbj ect s.

set (key, val ue)
Sets the property persistently.

RootPersistentObject

A RootPersistentObject (RPO) differs from a PersistentObject (PO) in that it acts as a container
for other PersistentObjects, and may be placed in the filesystem.

All PersistentObjects except RPOs must be associated with a RootPersistentObject.
Inherits from DTObjectStore.PersistentObject.

Constructor

Root Per si st ent Obj ect (argl, arg2)
ar g1 defines the user ID, and ar g2 the ID for this RPO.

RootPersistentObjects may be created in the following ways:

rpo = new Root Per si st ent Qbj ect () ; creates a new RootPersistentObject
that does not live in the filesystem but can be placed there with

Fi | eSystem put ().

rpo = new Root Per si st ent Obj ect ( PORef ) ; creates a new
RootPersistentObject with a given ID.

Methods

childArray() keyArray()
children() keys()
construct()

chil dArray()

Returns an array of all public keys that are child objects.

children()

Returns a hash of all public keys that are child objects.

172



construct ()
Constructs an RPO.

keyArray()

Returns an array of all public keys.

keys()

Returns a hash of all public keys.

Functions

getErrorString(err)
Returns the specified error as an English text string.

makeSaf e('s)
Returns a new string, which is a "safe" encoding of the string specified. "safe" means that
it is a valid JavaScript identifier.

set (obj, prop, value)
Sets a property/value pair for a persistent object. 0bj may be a reference to the
PersistentObject, or a string representing the owner/id pair. pr 0p is the property of the
variable to set. val ue is a number, string, or PersistentObject that represents the value
being set.

unMakeSaf e( s)

Returns the original string, which may be an invalid JavaScript identifier.

updat e$( obj s)

Updates the local copy of the object to the state of the server copy.

173



DTPane

The DTPane package defines the Pane class.

Classes

Pane

The Pane class is a subclass of Container that has the ability to manage its children (all
Components) with a concept of focus. At any one time, zero or one of a Pane’s focusable
children may have the Pane’s focus. If there is a child in focus, it is only active if the Pane itself
has focus within its parent Pane, and so on up to the Screen, which is the top-level Pane.

In tracing down the Pane/Component containment tree from its root at the Screen, the path along
which Components are active is called the active path. The deepest Component in the active
path, the active component, is called the primary Component.

A Pane may have one of its child Components designated as its default focus. A strong default
focus (which may be nul | ) attempts to take focus when a Pane becomes active. A weak default

focus takes focus when a Pane becomes active and has no previously focused Component.

A focus ring is a stable ordering of focusable children in a Pane, used to define a serial path of
user movement among Components.

For more information, see Focus.
Inherits from DTContainer.Container.

Constructor
Pane( | ayout ranager)
| ayout _nmanager (optional) specifies the layout manager to attach to the pane.

Actions

None.

Methods

addComponent(component, setAllowBackgroundSteals(allow)
constraints, beforeComponent) setDefaultFocus(component, strong)
advanceFocus(direction) setEnabled(enabled)
handleKeyboardEvent(event) setFocus(component)
removeComponent(component) setFocusToEnd(whichEnd)
reorderComponent(component,

beforeComponent)

174



addConponent (conponent, constraints, beforeConponent)
Adds a conponent to the pane, placed before bef or eConponent in the focus
ring. const r ai nt s defines a constraints object to be passed to the layout manager's
addConponent method. Note that not all layout managers require a constraints
object.

advanceFocus(di rection)
Advances focus through the focus ring in the direction specified: 1 for forward; - 1 for
reverse.

handl eKeyboar dEvent (event)
Event handler for keyboard events. Pressing the tab key moves focus forward through
the focus ring. Pressing shift-tab moves focus backward through the focus ring. All other
keyboard events are ignored. This method is typically overridden to take application-
specific action based on the defined keyboard events.

r emoveConponent (conponent)
Removes the specified cOnponent from the pane. Changes focus and removes the
component from the focus ring, if necessary.

r eor der Conponent (conponent, bef oreConponent)
Moves the specified conponent to the position before the bef or eConponent .

r out eRef ocusEvent (conponent, reason, event)
Called by a child component when it has received a refocus event.

set Al | onBackgr oundSt eal s(al | ow)
Sets whether clicking on the Pane's background sets the focus to nul | . Default is
true.

set Def aul t Focus(conponent, strong)
Specifies the conponent to which focus will be set by default. St r ong specifies
whether or not the default focus is strong. If t I ue, an implicit refocus will change focus
to the default; if f al se, it will change to the last focused component.

set Enabl ed( enabl ed)
Sets the enabled state of the component: t r ue if enabled; f al se if not.

set Focus( conponent)
Changes focus to the specified component. Returns t r ue if focus was changed
successfully, f al se if not.

set FocusToEnd( whi chEnd)
Sets focus to the end of the focus ring: - 1 if the beginning; 1 if the end of the ring.

Functions
None.

175



DTPersistentArray

The DTPersistentArray package defines the PersistentArray class.

Classes

PersistentArray

A PersistentArray object stores an array of information that is maintained on the server, and
therefore persists from user session to user session. This may include information such as the
user ID, and whether the application was launched and its window location the last time the
Desktop.com session was ended.

For more information, see Persistence.
Inherits from DTObjectStore.PersistentObject.
Constructor

Persi stent Array(argl, arg2)
ar gl defines the user ID, and ar g2 the RootPersistentObject with which this array is

associated.
Methods
getLength() set(index, value)
keyArray() setLength(len)
keys() sort(compare)
pop() splice(array, start, delete_count, values)
push(value) top()

get Lengt h()

Returns the length of the array.

keyArray()
Returns an array of all public keys.

keys()

Returns a hash of all public keys.

pop(a)

Removes and returns the last element of the array.

push(val ue)
Pushes the val ue on the end of the array.

176



set (i ndex, val ue)
Sets the element at location i ndeX to the specified val ue.

set Lengt h( | en)
Sets the length of the array.

sort (conpare)

Sorts the array based on conpar e, which is an optional function. Numeric or
alphabetic input is the default.

splice(array, start, delete_count, val ues)
Inserts and/or deletes elements in an array. A single callto Spl i ce() may insert
items, delete items, or do both simultaneously.

array is a reference to the array to work with. St ar t is an integer that specifies a
zero-based index within ar r ay at which spl i ce() will begin. del et e_count is
an integer that specifies how many elements of ar r ay to remove. If del et e_count
is zero, no deletion is performed. val ues (optional) is an array of elements to insert
into ar ray. If val ues is omitted or an empty array, no insertion is performed.
Elements following the location of insertion or deletion are shifted so that no gaps appear
inarray, and the | engt h property of ar r ay is updated to reflect its new size.

Returns a reference to ar r ay.

For an example, see DTArray.

top()

Returns the last element of the array.

Functions
None.

177



DTProgressBar

The DTProgressBar package defines the ProgressBar class.

Classes

ProgressBar
Defines a standard, graphic progress bar.
Inherits from DTContainer.Container.

Constructor
ProgressBar ()

Actions

None.

Methods

getProgress() setSize(w, h)
setProgress(p) setWidth(w)

get Progress()
Returns the progress amount as a number between -1 and 1. If -1, the progress bar is
inactive, and displays an animated picture that looks like a scrolling bar.

set Progress(p)
Sets the progress amount where P is a number between -1 and 1. If -1, the progress bar
is inactive, and displays an animated picture that looks like a scrolling bar.

set Si ze(w, h)
Sets the width of the bar. The height is always DTProgressBar.ProgressBar.HEIGHT, no
matter what h is passed in.

set Wdt h(w)
Sets the width of the bar in pixels.

Functions
None.

178



DTPrompt

The DTPrompt package defines the DoPr onpt $() function.

Classes
None.

Functions

DoPronpt $(text, input, where)
Displays a dialog prompt window, which displays the given t ext , and the default value
I nput (optional) in a user-input field. Wher e (optional) specifies a reference to an
object (either an Application or a Window) relative to which the dialog is to be centered
and made modal. If wher e is omitted, the dialog will be centered on the screen and
made system-modal. As window centering and modality is the most common, pass a
Window reference for Wher e unless there is some reason not to.

Returns the user's input value, or nul | if cancelled.

179



DTQuestion

The DTQuestion package defines the AskQuest i on$() function.

Classes
None.

Functions

AskQuesti on$(text, where)
Displays a dialog window with the specified text, and Yes, No, and Cancel buttons.
Dialog windows are resized to fit the text. Text is wrapped where appropriate, and "\n"
inserted in a line of text will define a line break. wher e (optional) specifies a reference
to an object (either an Application or a Window) relative to which the dialog is to be
centered and made modal. If wher € is omitted, the dialog will be centered on the
screen and made system-modal. As window centering and modality is the most common,
pass a Window reference for Wher € unless there is some reason not to.

Returns yes, no, or cancel .

180



DTQueue

The DTQueue package defines the Queue class.

Classes

Queue

The Queue class defines an ordered array of objects.
Inherits from DTObjectFramework.DTObject.
Constructor

Queue( max_si ze)
MaxX_Si ze sets the maximum length of the queue.

Methods
deQ() peek(n)
enQ(data) remove(n)
getSize()
deQ()
Removes and returns the object from the end of the queue.
enQdat a)
Adds the given data to the queue.
get Si ze()
Returns the number of elements in the queue.
peek( n)
Returns the object in the queue at position number N, with the first position zero. By
default, c=0.
remove( n)

Removes the object in the queue at position N.

Functions
None.

181



DTRadioButtonGroup

The DTRadioButtonGroup Package defines the RadioButtonGroup class.

Classes

RadioButtonGroup

Encapsulates a group of radio-button controls, which function like check boxes, except that only
one item in the group may be selected at a time. It is also possible to have none of the items in
the group selected.

A ColumnLayoutManager is automatically attached to the group. To configure a
RadioButtonGroup’s layout, call its get Layout Manager () method to retrieve a reference
to the ColumnLayoutManager, then call methods of the layout manager. Radio button groups
should not be sized with set Si ze() .

Radio button groups are non-circular Panes, meaning that keyboard-based focus advances will
travel through the group and out the other side rather than wrapping around. (See Focus in the
GUI Structure chapter for details.) Radio button groups interpret the up- and down-arrow keys,

and the tab and shift-tab keys, as focus-advance keystrokes. Pressing the spacebar will select

the item in the group that is in focus.

Inherits from DTPane.Pane.

See also DTBorderedRadioButtonGroup.BorderedRadioButtonGroup, and
DTColumnLayoutManager.ColumnLayoutManager.

Constructor

Radi oBut t onGr oup()

Actions
changed: selection has changed to a different item in the group.

Methods

additem(text, data) setCheckedltem(index)
getCheckedltem() setCheckedltemByData(data)
getCheckedltemData() uncheckAllltems()

setAllowUserUncheck(allow)

addl ten(text, data)
Adds an item with the specified t eXt to the group. Items appear listed in the order in
which they are added. The dat a argument is a string or number that serves to identify
the item being added. This value may be retrieved using get Checkedl t enDat a()
when the item is selected. If dat a is omitted, the t ext argument will be used for the
item's data.

182



get Checkedl ten()

Returns the (zero-based) index of the currently selected item, or nul | if no item is
selected.

get Checkedl t enDat a()

Returns the data associated with the currently selected item, or nul | if no item is
selected.

set Al | owUser Uncheck( al | ow)

Sets whether users are able to deselect all items in the group. When allowist r ue,

users may deselect by clicking the selected item. Default is f al se.

set Checkedl t en( i ndex)
Selects the item with the specified (zero-based) i hdex.

set Checkedl t enByDat a( dat a)
Selects the item with the specified dat a.

uncheckAl I I tens()
Resets the group to the state in which no item is selected.

Functions
None.

183



DTRectangle

The DTRectangle package defines the Rectangle class.

Classes

Rectangle
Defines a rectangular border object used to outline groups of related components.

Note that a rectangle used to enclose other components must be placed BEHIND them. If it is
not, the components will be visible, but they will not respond to mouse events.

Inherits from DTContainer.Container.
Constructor
Rect angl e( Col or)

If color is set to white, the border of the rectangle is set to white; if not, it is black.

Actions
None.

Methods

setSize(w, h)
Sets the outer size of the rectangle, including its border, in pixels.

set Thi ckness(t hi ckness)
Sets the thickness of the rectangle border in pixels.

Functions
None.

184



DTRendezvous

The DTRendezvous package defines the Rendezvous class.

Classes

Rendezvous

Defines a meta-callback object that waits for a number of blocking function calls in parallel, then

returns the results in an array.

The following example will wait until 5 seconds elapse, or both asynchronous get calls succeed.

var rv = new DTRendezvous. Rendezvous();
foo.get("left", rv.register(0));
foo.get("right", rv.register(1));

var results = rv.tinmedWit$(5000)

The results array returned viathe wai t () orti medWai t $() method contains all results
reported by that time.

You may also supply a notifier callback to the constructor. This notifier is called when the
Rendezvous gets a result with the result (see below). If the notifier wishes, it may call
rv.abort () with areason and key to abort the wait immediately.

It is possible to register a number of calls with a Rendezvous, Wai t $( ) , register more, then
wai t $() again.

The result returned fromwai t $() and t i medWai t $() is an object with the following
properties:

success: whether all calls succeeded

error:ifsuccessis f al se, returns DTRendezvous.ERRNO.ERR_TIMEOUT,
DTRendezvous.ERRNO.ERR_ABORT, DTRendezvous.ERRNO.ERR_INUSE, and
DTRendezvous.ERRNO.ERR_SOMEERRS.

abort _reason: the reason code passed to abor t () if error is ERR_ABORT.
abort _key: the key as above.

r esul t s: all the results so far. Note that new results may appear in this object later.

Inherits from DTObjectFramework.DTObject.

185



Constructor

Rendezvous(notify cb)
not i fy_cb defines an optional callback which is called whenever a result is reported.
This callback receives one argument, which is an object with two properties: I V, the
rendezvous; and val ue, the result returned.

Methods
abort(reason, key) timedWait$(timeout)
register(key) wait$()

abort (reason, key)
Signals an error. Should only be called from a notifier callback.

regi ster(key)
Returns a callback used to submit a result. key (optional) should be a number or string.

ti medWai t $(ti meout)
Waits until the time specified (in ms) and then passes results array to callback. Timeout
of -1 means wait indefinitely.

wai t $()

Waits indefinitely (or until Not i fy _cb returns non-null), then passes results array to
callback.

Functions
None.

186



DTScrollBar

The DTScrollBar package defines the ScrollBar class.

Classes

ScrollBar
Defines a scrollbar object, consisting of a bar with a moveable slider, and arrow buttons.

The slider size/position is not (necessarily) an integer value of pixels, which allows more precise
adjustment of its position. (It is only converted to an integer when passed to set Posi ti on()
orset Si ze() for the slider.) This allows the developer, for example, to guarantee a 15-pixel

virtual increment regardless of the real size of the scroll bar.

Inherits from DTContainer.Container.

Constructor

Scrol | Bar (orientation)
ori ent at i on (required) may be either ScrollBar.HORIZ or ScrollBar.VERT to
construct a horizontal or vertical scrollbar, respectively.

Actions

None.

Methods

getOrientation() setSize(w, h)
getSliderSize() setSliderSize(s)
positionComponents() setSliderSizeProportional(s)

getOrientation()
Returns the horizontal or vertical orientation of the scroll bar.

get SliderSi ze()
Returns the width and height of the slider, in pixels. Sliders are always square, and
therefore take only one size value.

posi ti onConponent s()
Updates the window components based on the current position and size of the slider.

setSize(w, h)
Sets the width and height of the scroll bar, in pixels.

set Slider Si ze(s)
Sets the width and height of the slider, in pixels. Sliders are always square, and therefore
take only one size value.

187



set Sl i der Si zeProportional (s)
Sets the proportional location of the slider. Valid input is a number between 0 and 1.

Functions

get Sl i der Position()
Returns the position of the slider in pixels.

get Sl i der Posi ti onProportional ()
Returns the position of the slider as a real number between 0 and 1.

get Sl i der Si zePr oportional ()
Returns the proportional size of the slider. Valid input is a number between 0 and 1.

set Sl i der Posi tion(p)
Sets the position of the slider in pixels.

set Sl i der Posi ti onProportional (p)
Sets the position of the slider as a real number between 0 and 1.

188



DTScrollingTextBox

The DTScrollingTextBox package defines the ScrollingTextBox class.

Classes

ScrollingTextBox

Defines an automatically scrolling text box, which has a vertical scrollbar, and resizes and
rewraps itself automatically, in which developer or user defined text may be displayed.

A Scrolling Text Box has two sizes: its size, and its virtual size. Size is the component's absolute
size, including any areas which might be beyond the displayed area and invisible to the user.
Virtual size is that visible on the screen at any time.

Inherits from DTScrollPane.ScrollPane.

Constructor
Scrol | i ngText Box()

Actions
None.

Methods

changeVirtualSize(dw, dh) setVirtualSize(w, h)
getText() setVirtualWidth(w)
setSize(w, h) togglelnput(allow)
setText(text)

changeVi rtual Si ze(dw, dh)

Changes the outer width and height of the virtual text box by the given number of pixels.

get Text ()
Returns the user input text from the box.

setSize(w, h)
Sets the visible outer width and height of the box.

set Text (text)
Sets the text to display in the box.

setVirtual Si ze(w, h)
Sets the width and height of the virtual text box.

189



set Vi rtual W dt h(w)
Sets the width of the virtual text box.

t oggl el nput (al | ow)

Allows the developer to turn input on or off.

Functions
None.

190



DTScrollPane

The DTScrollPane package defines the ScrollPane class.

Classes

ScrollPane

Defines a scroll pane (a window pane and an attached scrollbar), in which the visible size of the
pane is smaller than the size of its content. Attached scroll bars allow the user to scroll through
the entire pane.

Inherits from DTPane.Pane.
Constructor

Scrol | Pane( | ayout manager)
| ayout _nmanager sets the manager to attach to the pane.

Actions

None.

Methods

addComponent(c) removeComponents(c)
changeVirtualSize(dw, dh) setBackgroundColor(color)
getComponent(index) setHorizontalScroll(enabled)
getLayoutManager() setScrollPosition(x, y)
getNumberComponents() setSize(w, h)
getScrollPosition() setVerticalScroll(enabled)
getVirtualSize() setVirtualSize(w, h)
removeComponent(c) setVirtualwWidth(w)

addConponent (¢)

Adds the specified component to the pane.

changeVi rtual Si ze(dw, dh)
In Netscape, changes the scrollable width and height of the pane by the given number of
pixels. In Internet Explorer, does nothing, as size is set automatically.

get Conponent (i ndex)
Returns the component defined by I ndex.

get Layout Manager ()
Returns the layout manager associated with the scroll pane.

191



get Nunber Conponent s()

Returns the number of components added to the scroll pane.

get Scrol | Position()
In Netscape, Returns the coordinates of the origin of the slider in the scrolling region. In
Internet Explorer, returns nul | .

getVirtual Si ze()
In Netscape, Returns the scrollable width and height of the scroll pane (the virtual size of
the pane). In IE, returns the size of the visible region.

removeConponent (¢)
Removes the specified component from the pane.

r emoveConponent s( c)
Removes all components from the pane.

set Backgr oundCol or (col or)
In Netscape, sets the color of the scrollbar, and the background color of the pane. In
Internet Explorer, does nothing. COl Or is defined as a 6-digit hex string which begins
with a "#" character, such as "#00CC99."

set Hori zont al Scr ol | (enabl ed)
In Internet Explorer, enables horizontal scrolling. t r ue by default.

set Scrol | Position(x, Yy)
In Netscape, sets the x and y coordinates of the origin of the slider in the scrolling region.
In Internet Explorer, has no effect

set Si ze(w, h)
In Netscape, sets the viewable width and height of the scroll pane. In Internet Explorer,
does nothing, as size is set automatically.

set Vertical Scrol | (enabl ed)
In Internet Explorer, enables vertical scrolling. t r ue by default.

setVirtual Si ze(w, h)
In Netscape, sets the scrollable width and height of the scroll pane. In Internet Explorer,
does nothing, as the virtual size is set automatically.

set Virtual Wdth(w)

In Netscape, sets the scrollable width of the pane. In Internet Explorer, sets the viewable
width of the pane.

Functions
None.

192



DTSlideDialog

The DTSlideDialog package defines the SlideDialog class.

Classes
SlideDialog

Displays a dialog window containing a series of panes, only one of which is visible at a time. The
SlideDialog includes Next and Back buttons, which allow the user to navigate through the series.

Inherits from DT TransientDialogWindow.TransientDialogWindow.

Constructor

Sl i deDi al og()

Actions

None.

Methods

addPane(pane, title) getVisiblePane()
backPane() nextPane()
getPaneSize() setVisiblePane(idx)

getVisibleIndex()

addPane( pane, title)
Adds a pane with the given title.

backPane()
Displays the previous pane.

get PaneSi ze()
Returns the width and height of the pane.

get Vi si bl el ndex()

Returns the index of the visible pane.

get Vi si bl ePane()
Returns a key to the visible pane.

next Pane()
Displays the next pane in the series.

set Vi si bl ePane(i dx)

Sets the visible pane.

Functions
None.

193



DTSlider

The DTSlider package defines the Slider class.

Classes
Slider

Sliders are user-input controls that accommodate numeric values between two endpoints.
Graphically, a slider is a track with a button that may be dragged left or down (for decreasing
values) and right or up (for increasing values) along the track. Clicking along the track away from
the slider button will "bump" the slider along the track in that direction.

Sliders are not required to have integer values or limits. They may be forced to by specifying
integral limits and an integral increment size, using an incremental slider (see DTIncrSlider).

Sliders do not support dynamic dragging; they generate value change actions only at the end of
interactive drags, not during them. Continuous sliders round to the nearest pixel for both dragging
and bumping increments.

A slider cannot accept input of more than its maximum or less than its minimum.

The widget's breadth (size along the axis perpendicular to the track) cannot be changed; the
relevant argument to set Si ze( ) is ignored.

Note that in vertical sliders, a higher y value indicates a lower numerical value for the slider.
Inherits from DTContainer.Container.

Constructor

Slider ()

Actions

drag finish: "changed"
bump click: "changed"
setValue(): "changed"”

Methods

getLimits() setOrientation(orientation)
getOrientation() setSize(w, h)

getValue() setValue(value)

setLimits(minVal, maxVal)

getLimts()
Returns the minimum and maximum values for the slider.

194



getOrientation()
Returns the orientation of the slider.

get Val ue()
Returns the value for the slider position. This method may return an undesirable number,
so callers should round off if a cleaner number is needed. If the desired rounding
granularity causes distinct pixel positions to map to the same value, use an incremental
slider. Note that using an incremental slider with increments that map to less than a few
pixels may work poorly.

setLimts(m nVal, naxVal)
Sets the minimum and maximum values for the slider.

setOrientation(orientation)
Sets the vertical or horizontal orientation of the slider.

set Si ze(w, h)
Sets the width and height of the slider.

set Val ue(val ue)
Sets the value for the slider position.

Functions
None.

195



DTStack

The DTStack package defines the Stack class.

Classes
Stack

Defines a simple stack object.

Constructor
St ack()

Actions
None.

Methods

getSize() push(element)
peek(c) remove(n)
pop()

All Stack methods return undef i ned if the parameters are out of range.

get Si ze()
Returns the number of elements in the stack.

peek(c)

Returns the object on the stack at position number C, with the first position zero. By
default, c=0.

pop()

Pops and returns the top element.

push(el enent)
Pushes the element € on the end of the array.

remove(n)
Removes the top N things from the stack, or all things if no N is passed in.

Functions
None.

196



DTStyle

The DTStyle package defines the Style class.

Classes
Style

Defines a style object. Component . set St yl es() may be used to set the style.
These methods should be used only in developer implemented, low-level components.

Inherits from DTObjectFramework.DTObject.

Constructor

Styl e()

Methods

get (prop)

Returns the style sheet properties for a component.

set (prop, val ue)
Sets the style sheet properties for a component.

Functions
None.

197



DTTableLayoutConstraints

The DTTableLayoutConstraints package defines the TableLayoutConstraints class.

Classes

TableLayoutConstraints

Defines the parameters used to construct a table layout.

Constructor
Tabl eLayout Constrai nts()

Actions
None.

Methods

set Def aul t s()
Sets the default layout constraints for the layout manager.

Functions
None.

198



DTTableLayoutManager

The DTTableLayoutManager package defines the TableLayoutManager class.

Classes

TableLayoutManager

Defines a TableLayoutManager, which may be associated with any pane or window.
Desktop.com tables closely resemble HTML tables, in that individual rows or columns may have
differing heights or widths, respectively. Padding for cells may be set by individual cell.

TableLayoutManagers differ from GridLayoutManagers both in the flexibility of cell and row sizing,
and in that a table will distribute available extra space to cells depending on their weight
properties.

See also GridLayoutManager.
Inherits from DTLayoutManager.LayoutManager.

Constructor
Tabl eLayout Manager ()

Methods

addComponent(component, constraints)  layoutComponents()
getColumns() setColumns(ncols)
getRows() setRows(nrows)

addConponent (conponent, constraints)
Adds a component to the table using the specified const r ai nt s, which may take
one or more of the following values:

f il :specifies if the component should be stretched vertically, horizontally, or
both to fill the cell. Valid input includes FILL_NONE, FILL_BOTH,
FILL_HORIZONTAL, and FILL_VERTICAL.

wei ght _X: the x sizing weight.

wei ght _y: the y sizing weight.

Span_X: the number of columns the component may cross horizontally.
Span_y: the number of columns the component may cross vertically.
pad_x: the horizontal padding.

pad_y: the vertical padding.

| oc_ X: the column position of the component.

| oc_y: the row position of the component.

get Col ums()
Returns the number of columns in the table.

199



get Rows()
Returns the number of rows in the table.

| ayout Conponent s()
Lays out the components for the table.

set Col ums(ncol s)
Sets the number of columns in the table.

set Rows( nrows)
Sets the number of rows in the table.

Functions
None.

200



DTTabView

The DTTabView package defines the TabView class.

Classes
TabView

Defines a tabbed window, with multiple pane components, only one of which is visible at any
given time. This class defines a widget which allows users to switch between window panes by
clicking on tabs.

Note: Do not call Set Si ze() on panes added to TabView, as TabView will automatically size
any added panes. To get the size TabView uses (for example, to adjust the size of a component
contained within a pane added to the TabView), call get Si ze() on an individual pane.

Inherits from DTPane.Pane.

Constructor

TabVi ew()

Actions
t abbed: a new tab has been clicked.

Methods

getActivePane() removePane(num)
getLabel(num) setActivePane(activePane)
getNumPanes() setLabel(num, label)
getPane(num) setPane(num, pane)

addPane( pane, | abel)

Adds the specified pane to the tab view, and labels the added tab with the | abel
provided.

get Acti vePane()
Returns the active pane in the tab view.

get Label (num
Returns the tab label for the pane specified by num

get NunPanes()
Returns the number of panes added to the tab view.

get Pane( num
Returns the pane specified by num

201



r enovePane( nun
Removes the pane specified by num

set Acti vePane(acti vePane)
Sets the specified pane to be active.

set Label (num | abel)
Sets the tab label of the pane specified by num

set Pane( num pane)
Replaces the pane specified by numuwith the new pane (pane).

Functions
None.

202



DTTextBox

The DTTextBox package defines the TextBox class.

Classes

TextBox
Defines a box in which text is displayed.
Inherits from DTComponent.Component.

Constructor

Text Box(text, alignnent)
Specifies the t ext andits al i gnment in the box.

Actions

None.

Methods

getAlignment() setColor(color)
getText() setText(text)

setAlignment(alignment)

get Al i gnnment ()

Returns the alignment for the text within the box.

get Text ()
Returns the text from the box.

set Ali gnnent (al i gnnment)
Sets the alignment for the text within the box. Valid input includes TextBox.LEFT,
TextBox.RIGHT and TextBox.CENTER.

set Col or (col or)
Sets the color of the text. Ol Or is defined as a 6-digit hex string which begins with a
"#" character, such as "#00CC99."

set Text (text)
Sets the text string to be used for the box.

Functions
None.

203



DTTextimagelLabel

The DTTextimagelLabel package defines the TextimageLabel class.

Classes

TextimageLabel

Defines a text label object, with an optional image included above or to the left of the text. An
actionListener for events such as "click" and "double click" may be associated with this label.

Inherits from DTTextBox.TextBox.

Constructor

Text | mageLabel (text, image, alignnment, tooltip)
Specifies the t Xt and i mage to be included for the label, with the given
al i gnnment andt ool ti p to display for mouse-over.

Actions
None.

Methods
getimage() setText(text, num_breaks)
setimage(image)

get | mage()
Returns the path to the image.

set | mage(i nage)
Sets the image to be displayed with the text.

set Text (text, num breaks)
Sets the text for the component. num_br eak specifies the number of new lines that
will be inserted between the image and the text.

Functions
None.

204



DTTextinputBox

The DTTextinputBox package defines the TextinputBox class.

Classes

TextinputBox

Defines a text input box, which may be used to gather user input. The box displays multi-line text
which the user may edit. Word wrapping is done automatically.

Inherits from DTComponent.Component.

Constructor
Text | nput Box()

Actions
None.

Methods

deleteCharLeft() setText(t)

getText() wrap_lines(l, check_for_underflow, force_left to right)
insertChar(c)

del et eChar Left ()
Deletes the character to the left of the cursor.

get Text ()
Returns the string of text currently in the box.

i nsert Char(c)
Inserts the character C at the current cursor location.

set Text (t)
Sets the text in the box to the string t , and word wraps if necessary.

wrap_lines(l, check for_underflow, force left_to_right)
Wraps the lines of text. | is the line from which to begin the wrap;
check_f or _under f | owchecks to see if the previous line is full; and

force left _to_right forces the wrapping algorithm to work from left to right, for
greater efficiency.

Functions

handl eMouseEvent (e)
Called when a mouse event is received.

205



DTTextinputBox2

The DTTextinputBox2 package defines the DTTextinputBox2 class.

Classes

TextlnputBox2

Defines a text input box, which may be used to gather user input. The box displays multi-line text
which the user may edit. Carriage returns are recorded. Word wrapping is done automatically.

Inherits from DTComponent.Component.

Constructor
Text | nput Box2()

Actions
t ext _changed: the text in the Box has been changed.

Methods
deleteCharLeft() insertChar(c)
getText() setText(t)

del et eChar Left ()
Deletes the character to the left of the cursor.

get Text ()

Returns the string of text currently in the box.

i nsertChar(c)
Inserts the character C at the current cursor location.

set Text (t)
Sets the text in the box to the string t , and word wraps if necessary.

Functions
None.

206



DTTextlnputField

The DTTextInputField package defines the TextlnputField class.

Classes

TextInputField

Defines a one-line text input field (which may be placed in a pane or other components),
implemented using the browser's native HTML <input type=text> component.

Inherits from DTNativeComponent.NativeComponent.

Constructor

Text I nput Fi el d(t)
t (optional) defines the initial, editable text.

Actions
changed: focus is lost and text has changed.

Methods

getText() setSize(w, h)
setEnterKeyMode(on) setText(t)
setFocusable(focusable) setWidth(w)
setLength(length)

get Text ()

Returns the text from the field.

set Ent er KeyMode( on)
Sets whether the enter key will cause an event to occur.

set Focusabl e(f ocusabl e)
Sets whether the component may receive focus.

set Lengt h( | engt h)
Sets the width of the field in number of characters.

setSize(w, h)
Sets the width and height of the field in pixels.

set Text (t)
Sets the text for the field, which may be user-defined.

207



set Wdt h(w)
Sets the width of the field in pixels.

Functions
None.

208



DTTextLabel

The DTTextLabel package defines the TextLabel class.

Classes
TextLabel

Defines a single-line version of the TextBox object. It displays a single line of text, which will not
wrap or resize the component in which it is placed.

Inherits from DTTextBox.TextBox.

Constructor

Text Label (text, alignnment)
Specifies the t ext for the label, and the text's al i gnment within the label.

Actions
None.

Methods

set Si ze(w, h)
Sets the size of the text label. Text will be truncated if it is beyond the size specified here.

Functions
None.

209



DTTextTreeView

The DTTextTreeView package defines the TextTreeView class.

Classes

TextTreeView

Defines an object which allows users to view a hierarchy in the form of a tree. The hierarchy is
stored by adding paths (using addPat h( ) ) where /foo/bar/bag represents bag as a child of bar
as a child of foo. Two paths, /foo/bar and /foo/bag represents bag and bar as equal children of

foo.

Note that this class may be used to represent any sort of hierarchy: filesystems are only one
possibility. In the first example above, /foo/bar/bag may represent both foo as father to bar, who is
father to bag, making foo bag's grandfather; as well as bag as a folder within bar, which is in turn

a folder within foo.
Inherits from DTScrollPane.ScrollPane.

Constructor

Text TreeVi ew()

Actions
None.

Methods

addPath(path, iconl, data, icon2, hide, delimiter,
node_icon, no_update)

eraseBranch(node)
getNodeChild(node, child)
getNodeCollapsed(node)
getNodeData(node)
getNodeFromPath(path, delimiter)
getNodelcon(node)
getNodeText(node)
getPathFromNode(node)
getSelectedData()
getSelectedNode()

hideChildNodes(node)
removePath(path, delimiter)
setNodeCollapsed(node, collapsed)
setNodeData(node, data)
setNodelcon(node, icon)
setNodeText(node, text)
setSelectedData(data)
setSelectedNode(node)
setTopNode(text, icon)
update()

updateTreeChildren()
updateTreeSelectionindicator()

addPat h(path, iconl, data, icon2, hide, delimter,

node_i con, no_update)

Adds a path to the tree, using the following arguments:

pat h: creates a path with all missing nodes from the root to the leaf. pat h is delimited
by the string specified in del | m t er (default is "/ " if unspecified).

210



I conl: defines the default icon image to display with the new node (applies only to the
leaf node being created)

i con2: (optional) specifies the image to use when the node is selected.

dat a: user specified data stored with the new node data is any object which a user
might want to attach to the node corresponding to a path. This may be retrieved for later

use by get NodeDat a.
hi de: hides the node if t r ue.

no_updat e:ifsettot r ue, the view is updated after the call. If the property exists,
the text displayed with the node is dat a. nane; if dat a. nane does not exist, it is
the name of the node as specified in the path.

er aseBranch( node)
Removes a branch of the tree and all its associated components, beginning with the
given node. The node itself is not removed from the view. If one of the child nodes is
selected, its parent node is also selected.

get NodeChi | d( node, child)

Returns the child of a node with the name specified by a string. Returns nul | if a child
with that name does not exist.

get NodeCol | apsed( node)
Determines if a node is collapsed.

get NodeDat a( node)

Returns the data associated with the specified node.

get NodeFronPat h(path, delimter)
Returns the node in the view corresponding to the specified path. del i mi t er is the
separation in a path. Default is "/ " (which specifies an absolute path).

get Nodel con( node)

Returns the icon associated with the node.

get NodeText ( node)
Returns the text associated with the node.

get Pat hFr onNode( node)

Returns the path string in the form rootnode/path/to/node.

get Sel ect edDat a()
Returns the user specified data associated with the active node.

get Sel ect edNode()

Returns the selected node.

211



hi deChi | dNodes( nhode)

Recursively hides all children of the specified node, as well as the node itself.

removePat h(path, delimter)
Removes a path from the tree. If the node specified by pat h exists, it will be removed
(along with all of its children).

set NodeCol | apsed( node, col | apsed)
Collapses or explodes the specified node.

set NodeDat a( node, dat a)

Sets the data associated with a node. This method is provided for users' convenience,
and allows them to attach data to nodes in the hierarchy.

set Nodel con( node, icon)
Sets the icon associated with the node.

set NodeText (node, text)
Sets the text associated with the node.

set Sel ect edDat a( dat a)
Sets the data associated with the active node.

set Sel ect edNode( node)
Sets the selection to the specified node.

set TopNode(text, icon)
Sets the text and icon for the top-level node.

updat e()

Updates the view of the text fields' sizes and locations for the tree.

updat eTreeChi | dren()
Updates the view of the text fields' sizes and locations for the tree and its children.

updat eTr eeSel ecti onl ndi cat or ()
Sets the selection indicator component to the correct size and location.

Functions
None.

212



DTTimer

The DTTimer package defines the Timer class.

Classes

Timer

Defines a timer object to be associated with a component, which invokes a callback after a
defined amount of time.

Inherits from DTObjectFramework.DTObject.

Constructor

Ti mer (cal | back, interval, repeat)
i nt erval sets the number of seconds after which the callback should be called.
repeat,ift r ue, repeats the callback every defined interval of seconds, for the length

of time the processor runs. (To prevent the callback from repeating, create a non-
repeating timer whose callback restarts the timer.)

Methods

isRunning() start()
setinterval(milli) stop()
i sRunni ng()

Returns whether the timer is running.

setinterval (ml1i)
Sets the timer interval in milliseconds. Does not affect running timers.

start()
Starts the timer. By default, timers are created not running.

stop()

Stops the timer without calling the callback. Note that it is possible for the callback to
have already been called.

Functions

sleep$(mlli)

Sets the timer to sleep the given number of milliseconds.

213



DTTransientDialogWindow

The DTTransientDialogWindow package defines the DT TransientDialogWindow class.

Classes

TransientDialogWindow

Defines a class of Windows that can be created without an associated Application. Defines a
temporary dialog, which may be used for any mutable application function. Dialog windows are
created empty: any desired components may be added.The window's visual state will not be
saved across Desktop sessions.

Inherits from DTDialogWindow.DialogWindow.

Constructor
Transi ent Di al ogW ndow()

Actions

None.

Methods

autoLocation(arg) enable$(arg)
close(arg) wait$()

aut oLocati on(arg)
Automatically locates the window according to its size and the given Application, Window,
or, by default, the screen. ar g (optional) specifies a reference to an object (either an
Application or a Window) relative to which the dialog is to be centered and made modal.
If ar g is omitted, the dialog will be centered on the screen and made system-modal. As

window centering and modality is the most common, pass a Window reference for ar g
unless there is some reason not to.

cl ose(arg)
Closes the window. If a callback is defined with wai t $( ) , it is called with the given
argument.

enabl e$()

Displays the window on the screen by calling the window's draw method.

wai t $()

Waits until the window is closed, then returns the argument passed by cl ose( ar g) .

Functions
None.

214



DTUserData

The DTUserData package provides an object used to encapsulate user information such as their
name and email address.

Classes
None.

Functions

get Logi n()
Returns the current user's login. (This function is similar to the "whoami" function in
UNIX.)

get U )

Returns the current user's UID (user identification number).

get User | nf 0$()
Returns the user information as an object with four data members: success (t r ue or
fal se);first,the user's first name as a string; | ast , the user's last name as a
string; and emai | ; the user's email address.

| ogi nToUl D$( | ogi n)
Converts a login name to UID number, where UID is the hash key of the user on the
server (their reference number).

215



DTWindow

The DTWindow package defines the Window class.

Classes
Window

The base inner window used as the prototype for all application content panes in a managed
window. Should not be instantiated directly, but its methods are inherited by other object classes.

Inherits from DTPane.Pane.

Constructor

W ndow()

Actions

None. Actions are delivered from the WindowFrame associated with the window, and include
cl osed, resi zed, noved, andi coni zed.

Methods

close() recreate(VDO)
createVDO(parent_VDO) restore()
destroyVDO(parent_VDO) setDrawMethod(method)
doneLoading() setLocation(x, y)
getApp(app) setRestoreMethod(method)
getLocation() setSkipTaskBar(val)
getTag() setTag(tag)

init() setVisible( visible )
loading() setWindowFrame(wRef)
cl ose()

Closes the window.

cr eat eVDQ( par ent _VDO)
Creates a new visual display object with the parent object par ent VDO,

dest r oyVDQ par ent _VDO)
Destroys the visual display object with the parent object par ent VDO,

donelLoadi ng()

Called when the window is finished loading, just prior to the application calling itself.

get App()

Returns the application associated with the window.

get Locati on()
Returns the screen location of the window as an object with the properties X and Y.

216



get Tag()
Returns a string containing the tag assigned to the window's visual display object (VDO),
which contains information about the visual state of the window. The tag is set when the
application's addW ndow( ) method is called. get Tag() is typically called when the
user closes a window (or performs some other window action) to determine the action to
be taken based on which window has been closed or manipulated.

init()
Initializes the window.

| oadi ng()
Displays an in-pane method between the painting of the window and the painting of the
initial application components.

recreat e( VDO
Called to restore a window's visual state on redraw.

restore()
An optional method, which restores the paint style of the window. dr aw( ) is used if
rest ore() isnotpresent.

set Dr awivet hod( net hod)

Sets the draw method used to paint the inner contents of the window.

set Location(x, Yy)
Specifies the X and Y coordinates for the location of the window.

set Rest or eMet hod( et hod)
Sets the draw method used to restore the window, which may differ from that used at
startup. This method is optional. If not supplied, the method set by
set Dr awivet hod() is used.

set Ski pTaskBar (val )

Specifies whether or not the window is visible in the task bar. t r ue by default.

set Tag(t ag)

Sets the unique t ag string for the window, used to differentiate between windows owned
by an application.

set Vi si bl e(vi si bl e)
Sets whether the window is visible: t r ue if visible (default), f al se if not.

set W ndowFr ane( wRef)
Sets the WindowFrame object to be associated with this window, by reference.

Functions
None.

217



DTWrappingTextBox

The DTWrappingTextBox package defines the WrappingTextBox class.

Classes

WrappingTextBox

Defines a window with developer-defined or user-input text, which will automatically wrap when
necessary.

Inherits from DT TextinputBox2.TextinputBox2.

Constructor
W appi ngText Box()

Actions

None.

Methods

handleKeyboardEvent(e) setWidth(w)
rewrap_lines() togglelnput(allow)

setSize(w, h)

handl eKeyboar dEvent (event)
Called when a keyboard event is received.

rewap_|ines()
Rewraps the text lines.

setSize(w, h)
Sets the width and height for the box.

set Wdt h(w)
Sets the width for the box.

t oggl el nput (al | ow)
Allows the developer to turn input on or off.

Functions
None.

218



Appendix I: The Console commands

This appendix is provided as a quick reference guide to commands available in the Desktop.com

Console, our command line interface application. All definitions are also available from the

console itself. Simply type "help" and press enter for a list of available commands, or type "help

command_name" for information on specific commands.

For all examples:
* The Console is case-sensitive.
« ltalics denote user defined parameters.
e Items in brackets are optional.

basenane: Prints the base name of path.
example: "basenane pat h"

br owse: Opens a web site.
example: "br owse"

canoni cal : Prints the canonicalized name of path.
example: "canoni cal pat h"

cat : Displays file contents.
example:'cat filel [file2 ... fileN"

cd: Changes the working directory.
example:'cd [dir]"

chnod: Changes permissions for a directory or sharelink.
example: "chnod (-n|who (what|-)) sharepath"

chpass: Changes the current users password.
example: "chpass ol d_password new_passwor d"

cl ear : Clears the screen.
example: "cl ear "

conpi | e: Compiles a JSP file into a JSO file.
example: "conpi l e JSP_fil ename JSO fil enane"

di r nane: Prints the dir name of path.
example: "di r nanme pat h"

219



downl oad: Downloads a file.
example: "downl oad"

eval : Evaluates a JavaScript expression.
example: "eval expression"

exec: Executes a compiled script.
example: "exec object file"

get | i nks: Displays links for a path.
example: "get | i nks pat h"

get ui d: Prints the UID of the requested user.
example: "get ui d user nane"

get user i nf 0: Prints the current users first name, last name, and email address.
example: "get useri nf o"

hel p: Lists available commands or describes the given command.
example: "hel p [ command] "

hi st or y: Displays the command history.
example: "hi story [n]"

i d: Prints the current user id.
example: "I d"

| n: Creates a file link.
example:"l n (-s|-m to file fromfile"

(with "=s" for a symbolic link, and "—m" for a smart link)

| oad_package: Imports a package into the code frame.
example: "| oad_package"

| 0Qg: Writes a log message to the server.
example: "l 0og nmessage"

| s: Displays the contents of the current directory or specified directories.

example:"l s [-1]|-p|-t] [dirdl [dir2 ... dirN]"

nkdi r: Creates a directory (ies).
example:"'nkdir [-s] dirl [dir2 ... dirN"

220



(Including "-s" creates a symbolic path as well.)

NMV: Renames a file.
example:"mv from filenane to fil enane"

nuke: Unloads package(s) from the package manager.

example: "nuke package_nanel [ package_ nane2
package_nanmeN] "

open: Opens a file with an application associated with the given type.
example: "open fil enane [appnane|null] [appargs]"

PS: Lists running applications.
example: "ps”

pwd: Displays the current working directory.
example: "pwd"

I M Removes files.
example:'rm filel [file2 ... fileN"

r ndi r : Removes directories.
example:'rndir [-s] dirl [dir2 ... dirN"

(Including "-s" removes symbolic paths as well.)

I un: Runs an application.
example: "r un appnane [ appargs]"

set i con: Sets or clears the icon for a path.
example: "'set i con path (type iconPath) | X

shar e: Creates a share link.
example: 'shar e pat h sharepat h"

shar est at us: Shows sharing info for a path.
example: "shar est at us pat h"

t npnamne: Prints a filename that does not exist in path.
example: "t npnanme [prefix [path]]"

t ouch: Creates an empty file.
example:"touch filel [file2 ... fileN"

221



unshar e: Removes a sharelink or all sharelinks to a target.
example: "unshar e (path| sharepath)"

unwat ch: Unregisters a directory watcher.
example: "unwat ch wat chnunm

upl oad: Uploads a file.
example: "upl oad"

upt i me: Shows uptime on the A server.
example: "upt i me"

wat ch: Registers for updates regarding a directory.
example: "wat ch pat h"

whoam : Prints the username of the current user.
example: "whoam "

222



Appendix Il: KeyEvent Constants

This appendix lists all defined constants for the KeyEvent class. The keyboard input to which

these constants refer is self-explanatory, and is loosely arranged here as the standard keyboard

is arranged: top to bottom, and left to right.

All number keys, 0-9, in the format: KeyEvent . kVK_0

plus
KeyEvent . kVK_BACK_ QUOTE
KeyEvent . kVK_M NUS
KeyEvent . kKVK_EQUALS

All Shift+number key combinations:

KeyEvent .
KeyEvent .
KeyEvent .
KeyEvent .
KeyEvent .
KeyEvent .
KeyEvent .
KeyEvent .
KeyEvent .
KeyEvent .
KeyEvent .
KeyEvent .
KeyEvent .

kVK_TI LDE
kVK_EXCLAMATI ON
kVK_AT
kVK_POUND
kVK_DOLLAR
kVK_PERCENT
kVK_CARET
kVK_AMPERSAND
kVK_STAR
kVK_OPEN_PAREN
kVK_CLOSE_PAREN
kVK_UNDERL| NE
kVK_PLUS

All letter keys, a-z, in the format: KeyEvent . kVK_A LONER

All Shift+letter key combinations, A-Z, in the format: KeyEvent . KVK_A

223



All other typographic input:

KeyEvent .
KeyEvent .
KeyEvent .

KeyEvent .
KeyEvent .
KeyEvent .

KeyEvent .
KeyEvent .
KeyEvent .
KeyEvent .

KeyEvent .
KeyEvent .
KeyEvent .

KeyEvent .
KeyEvent .
KeyEvent .

KeyEvent .
KeyEvent .
KeyEvent .
KeyEvent .

kVK_OPEN_CURLY
kVK_CLOSE_CURLY
kVK_PI PE

kVK_OPEN_BRACKET
kVK_CLOSE_BRACKET
kVK_BACK_SLASH

kVK_COLON
KVK_SEM _COLON
kVK_DOUBLE_QUOTE
kVK_SI NGLE_QUOTE

kVK_LESS THAN
kVK_GREATER THAN
kVK_QUESTI ON

kVK_COMVA
kVK_PERI CD
kVK_FORWARD_SLASH

kVK_SPACE
kVK_BACKSPACE
kVK_TAB
kVK_ENTER

And special computer input keys:

KeyEvent .

KeyEvent .
KeyEvent .
KeyEvent .
KeyEvent .

KeyEvent .
KeyEvent .
KeyEvent .
KeyEvent .
KeyEvent .
KeyEvent .

224

kVK_ESCAPE

kVK_UP_ARROW
kVK_DOWN_ARROW
kVK_LEFT_ARROW
kVK_RI GHT_ARROW

kVK_HOVE
kVK_END
kVK_PAGE_UP
kVK_PAGE_DOWN
kVK_DELETE
kVK_| NSERT



Appendix lll: Color Values

Note that all color values within the Desktop.com development environment are defined as a 6-
digit hex string which begins with a "#" character, such as "#00CC99."

The following Desktop.com color palette values are provided for your convenience. #0066CC is
marked as the dominant color within the Desktop.com brand.

#FFFFCC  #33FF33 #FF6600 #PICCFF #E699FF  #DDGSCC #0039

225



Index

A
FaNed 1T o I ] (= =T PR RRRPTIRIN 37
1= PRSP 63
AP REfEIreNCe MANUAL........coiiiiiiiiiiii ettt e st e s st e e e baeeeesbaeeeea 57
Y Y o] o] o= 11 Te] o T PP PPPPRRT 64, 65, 66, 67
(D721 (o o | AP PR UTRTPPPRPRP 51
PN o] o] or= tuTe] gl D=1 = W N o =T S TP PPRRR 49
PN o] o] o= U1 Te] 1Y/ (oo [ TP RPTRR 47
PN o] o] Toz= 11Te] 11V, F= TaT= Vo =] S PP PO P PPRTR 68
P Y o] o] o= 1uTe] ] o =) K51 o] =T ox FR TP PP 70
FaY o] 0] o= 1410 ] g 5] = (=T o= X SR 71
Y 0] 1YL T T [ 1 72,73
N > V75 75,76
=NV = 1Y 0T 0141/ g =T =T 77,78
AttaChMENtLAYOULMANAGET .......ueiiieee e e it e e e e e s s e e e e e s s e e e e e e s e srnt e eeeeeessannnbnneeeeeeesannnes 80, 83
B
= TS (od 0] 1o o TP UPP TR 84
[200] (4= G TP 86
BorderedRAIOBULIONGIOUR .......uuietiaaiiiiiitiiitet e e e e ettt ee e e e e e e ettt e e e e e e e e e snsbbbeeeaaaeesaannbbbeeeeaaeeesannees 87
(20 fo =T t=To |VLV AT o To [0V PP PRTP T TRRPRUPR 89, 90
B O S T . e 91
2T oA TS=] VYT o o [ PO SP 92
2701 o] o S TP 84, 85, 94, 95, 147
= TS Tod =011 (o] o [P TOU PR UPRRPPIPI 84
C
1072 1| o= Tox - PP PTPPR TP 96
(011 o] o o0 ] 0 0 I o= Tod &=V =T SRR 58
104 01T o 4= o ) G TP 97
ClASS HIBIAICRY ...ttt e e ettt e e e e e e s a bbb et e e e e e e e s abeeeaaaeeeaans 59
CIBSSES ..ttt ettt e e e oottt e e e e e e e b a b e e et e e e e e e e R b e bt e e e e e e e e e nbebeeee e e nbareeaaaaeaaan 17
L0 o SRR 52,53, 55
(o<1 10T [ 110 o FR TP UPTTR 55
(o o111V 0] (o F=To [1 oo [P P T U PRTR 53
1= o 1111 o PR 52
[0 0] o 7= T 11 s o 5SS 53
1070 (o] PR OTPPPTTRRIN 225
Lo =101 oo SRR 225
(D=5 g o] o eto] 4 T o = 1 =] 4 - RS 225
COlUMNLAYOUIMBINAGET ... .. teeeeetee ettt ettt e e e oo ettt e e e e e e s e abbbe e e e e e e e e aanbabeeeaaaseeansbeneaeaeeanns 98
Common WINAOWS aNd dIAI00S ........ueiiiiiiiie ettt e et e e e e e e enbeaeeeea e 35
000491 o o] 0= o | FERURUTR TP TP PR PR PTPTPRPRPRPRPRPRPR 99, 100, 101, 102
(000] 40T o o] 01=] o | £ TUTTTTT TP 32
(0] 0111 o 4 TP TP RP TP 103
1070] 0 L<To] 1= TR 56
CONSOIE COMMEANTS ...ttt sttt e e e st e e e sa bt e e e sabe e e e s snbae e e e snbaeeeesnbaeeesanbeeaeas 219
1070] 1 7= 11 =1 SRR PPPRTPUPRRTRRR 104, 105
(0] 1 7= 1] =T £SO PPUPRTPPRN 41
107 ] 01 1=] o | TP PP PP PP PPPTPRPON 106, 107

226



== DT PP PP PPPR PP 49
DY DS e 49
D=1 o TU T[T To TR TSP 55
D=2 o] o edo] 4o 1Y PP P PSP 10
11 goTo {8 o3 1 o] o [P 10
DESKLOP.COM PACKAGES ...coeiiiiiiiiiiiii ettt ettt e e e e e s b bt e e e e e e e e e s e abnbeeeeaaaeeennnees 58
DEtaiISROW ... 109
D=3y o] o 1T €3 U | o = SRR 11,14
(D= (oo | PP 12, 51, 54, 56
L@ 1 4 011 o RSP 54
[o70] =10 1= 2 PSPPI 56
1)1 o Te [UTox i o] o W PSPPSR 12
D= 1o AV o oL PR 111
DT £=Tox (o] = 29
DIAGMABNAGET ... 112
DroOPDOWNCOMDOBOX ....etiieiiiiiitieitaee e ettt e e e e e e e bbbttt e e e e e s s b bbbt e e e e e e e e sansbbaeeeaaeesesnnbneeaaaaeas 114,115
DTAPI
ClASS-DASEA ... e e naananananaa 15
ClASSES. . e —————— 17
1] L] =T ot PP 19
L0111 0T TSP STPR 20
Lo o] [=Tox B 4 0 1S SO SE 18
2101 = U0 [ SO 16
D I[P Vo T =TT .= 148
DTWINGOW. ... 216
E
=0 1111 g [o T @2 e Lo [T OO SPPT PR 52
EVENt HaNIErS... ..o 37
EVENtGIabbhEr ... ..o 116
A= 01 (@] o] = ox P PP TP PSRRI 117
F
SR B = Tox (o] £ = T PP 29
FHEDOWNIOAA ......eeiiiiiiiiie ittt sttt e ettt e e st e e st e e e s nb b e e e s anbbeeensbeeeeeneee 119
] 1= PR 29
1 L1 T o SRR 120
1 LTS Y] 1= o PSR 30, 124, 125, 127, 128, 129
o = TR 128
02101 = To [ ST PPP SRR 124
LS [od (1 PSSP 30
(1210 o] (o= To TPV PURT T 132
FIOWLAYOULMANAGET ....eeeiiieiiiiiiiitie ettt ettt e e e e e e e ettt e et e e e e e e s e abbbeeeeaaeeesanbbbeeeeeaeeesanrees 133
FOCUS . ettt e e e e e e e e e e e et e e e e e e b e e e e s e s 39
FOCUS EVENLS ...ttt ettt e e e e e oo et e e e e e e s bbb e e et e e e e e annrnbe e e e e e aennnnnees 42
FOCUS-AUVANCE EVENES ... .eeiiiiiiiiie ittt sttt seb e e s enb e e s snbb e e s snbaeeennneeas 44
0] 011 (0] o 1= S TR PR 134
G
Lo To] 0 F= TS V70 1o 0] =PSRRI 58
GridLaYOULCONSIIAINTS ......eeeiiiiiieeeee ittt e e e e et e et e e e e e snbebe e e e e e e e e sannbbrneeaaaeaeanns 137,138
GriOLAYOULMABNAGET ... iiiiiiiieie e e ettt e e ettt et e e e s e e e bt eee e e e e e e s e s asnbbeaeeeaeeeeeannbbsneeeaaeseaanneeeans 139
GUI SETUCTUIE L.ttt ettt e e e e e e e e et s e e e e e e e ta bt e e e aeeeesbaa e s eeeeeessantenanaeanans 31

227



H

[ 1= 01T AT o 0 SR 140
HTIMLBOX ..teeitteiee ettt ettt ettt s ettt e e sttt e e e sttt e e e nst et e e e sta e e e e nbbeeesansbeeeeansbeeeeansteeansbeneeennes 141
HTIMLBIOWSEL ... 142
I
ToTe] g Y VT PP PURT T 143
IMAGEAICA. ... 145
IMAGEBULION ... 147
T gz Vo [T L= 4 SR 148
T Tod 251 1o [= T SO PRSP 149
1] LT g1 7= [oT= PO URR PR 19
K
() L0 T Lo B =T o RSO 43
(N YT o | PP PUUPUPUPTPTPTR 151
KEYEVENT CONSTANTS ... 223
L
= 1o 1= | LT o =1 o) PR T 152
[ N0 U Y F= g F= (o =] £ S P PP PPPTTUPUPPPP 33
LAYOULMEBINAIGET ... 154
[T 0] NN =T PSRRI 156
1S3 120 ) PRSP 157
M
1Y = oL PP 159, 160, 161, 162, 163
IMIENUBAT ...ttt e e e e st e e e e e e e s b e e et e e e e e s b r e e e e e e e e e ana 164, 165, 166
AV =1 0T o LS PRSP 20
N
N =T pgT=Te (@211 o T o) PP 167
N AT @d0] o 0] o To] =T o | APPSR 168
NAUVETEXIINPULBOX......eeeeiiee ettt ettt e e ettt e e e e s e et ab ettt e e e e e s s s aanbbeeeeeaaeeaaannbbeeeeeanaanneees 169
O
10 o] 1Tt B 1Y/ 01T PR O UPPRTT 18
OB JECIFTAMEBWOTK ...ttt e e e et e e e e e e e e e e et e e e e e e e s sanseabeeeeeaeesaansataneeeeeeesannnnaeeeesanns 61
L@ 01T 3 (o] = S 170
P
o T 2= Uo =SSR 16, 58
P AN . 174, 175
e T[T O PPV PPPRPPPPP 40
S S Y (=] o (o= PP SPPTT PR 21
PErSIStENT ODJECIS ... .ttt ettt e e e e e e e e e e e e e e e e e e aaaes 22,24, 26, 86
2 T0T0] (g =T 1 T PP TP PPRRRP 86
(o= Vi o TR TP 22
L5300 ¢ 0 To [T RRT TP 24
LS oo = 7] o S 26
LT L0 4 o IR 1o SRS 23
o 1Y (= 17 A £ - Y SR 176
ProgrammatiCc FOCUS ChANQJES .....uuuiiiiiiiiiiiiiiiee et r e e e s s st e e e e e s s snnanre e e e e e e e e annnees 46
e 00 | =2 = - 1 178
o 10 0 o] 179

228



Q

(O 1811 1o o DTSSR 180
L0 18T SR 181
R
R Te[To] =1U 1 o] g {1010 o J NPT PPRR 182
[ ETo = L o] [T PR PURT T 184
REFOCUS BVENIS ... ..ottt e e e e e e s bbbt e e e e e e e e e snabbbeeee e e e e snnnnees 45
RENUEZVOUS ...ttt ettt e e e e e e e sttt et e e e e e e e e eanbbebeeeaeeeeeennnreeeas 185, 186
Restoring PersiSteNt ODJECLS .......uuiiiiiiiiiiiiiiiii s e e e e s s s e e e e e s s s e e e e e e e e annrees 24
ROOt PerSiStENt ODJECLS ...iiiiiiiiiiiiieie et e e e s e e e e e s s st r e e e e e e s snnntreneeeeeans 25, 26

LS oo = 7= T PSS 26
S
Yol (0] 1S PP ROTPPRRTRRIN 187
Yol o] T T 1= 20 )R 189
Yo (o] | == T o TP PRPT TP 191
S [To =] BT 1o o [T UTTT TP 193
IS [T 1= PSPPSRI 194, 195
S 2= o) TP URT TP 196
117 PR RT TR 197
symbols

o [ 7= | OSSP 58
YY) (T I =0 TV T =T g LT ] £ USSR 13
T
TableLayOULCONSITAINTS .........viiiiiie e e e e e e e e s e e e e e e e s e e e e e e e e s anntnnneeeeeeseannnreeeeas 198
QLI o1 L=T Yo 1041 = g = Vo 1= SR 199
L= L= TR 201
LI = o) TP PP UUTUUU TR 203
TEXUMAGELADEL ...ttt e e et e e e e e e e s bbb e e e e e e s e sraeeeeaans 204
TEXUNPUIBOX . .. e e e e nnnnnnae 205
TEXUNPUIBOXZ ... .. e e e e e e e e e e e e e ennnnnnnnnne 206
TEXUNPUEFTEIA ...ttt e e e e e e bbbt e e e e e e e e abbbe e e e e e nnrneeeeaens 207
TEXILADEI ..t n bbb e e naeeas 209
IS I TSNV A= PRSP 210
BT 1 =331 1= 2 28
10101 0] o 0 F= V] SO RP 148
I PRSP 213
TranSieNtDIAIOGWINGOW .........eiiiiiiie e e e e e e s s e e e e e e e st e e e e e e e s snnbneereeeeesennnnreneeas 214
U
Uploading and DOwWNIOAdING COAE ......cocaoiiiiiiiiiiiiaee et a e e e ere e e e e e e e anaes 53
USEIDALA ... 215
W
LT To o SRR PRRR PRI 89, 90, 216, 217

[270] (0 [T £ =T F R RPRPPRRPRIRI 89
ATV = o] o1 o =D a1 =0 ) PP 218
VAT A1 Tq T = Vg I Y o] o] o L1 o] o PSR 50

229



	Desktop.com API
	Developers' Guide
	Devtool
	System Requirements

	Developers' Guide
	The DTAPI Class-Based Object Framework
	Packages
	Classes
	Object Types
	Inheritance

	Methods

	Persistence
	Creating Persistent Objects
	Working with Persistent Objects
	Restoring Persistent Objects
	Root Persistent Objects
	Subclassing PersistentObject and RootPersistentObject

	The FileSystem
	Files and Directories
	The DTFileSystem

	GUI Structure
	Components
	Layout Managers
	Common windows and dialogs
	Event Handlers and Action Listeners
	
	
	
	Listening
	Actions
	Events




	Focus
	Panes
	Containers
	Focus Events
	Keyboard Events
	Focus-Advance Events
	Refocus Events
	Programmatic Focus Changes


	Application Modes
	
	
	Launching Applications
	Launching a File
	Single Instance
	Multiple Instances



	Application Data Types
	Writing an Application
	Devtool
	Editing Code
	
	
	
	Images and HTML




	Uploading and Downloading Code
	Compiling
	Debugging
	The Console



	API Reference Manual
	Desktop.com Packages
	Class Hierarchy
	DTObjectFramework
	Classes
	DTObject

	Functions

	DTAlert
	Classes
	Functions

	DTApplication
	Classes
	Application

	Functions

	DTApplicationManager
	Classes
	Functions

	DTApplicationPrefsObject
	Classes
	ApplicationPrefsObject

	Functions

	DTApplicationStateObject
	Classes
	ApplicationStateObject

	Functions

	DTAppWindow
	Classes
	AppWindow

	Functions

	DTArray
	Classes
	Functions

	DTArrayLayoutManager
	Classes
	ArrayLayoutManager

	Functions

	DTAttachmentLayoutManager
	Classes
	AttachmentLayoutManager

	Functions

	DTBasicButton
	Classes
	BasicButton

	Functions

	DTBookmarks
	Classes
	BookmarkRecord

	Functions

	DTBorderedRadioButtonGroup
	Classes
	BorderedRadioButtonGroup

	Functions

	DTBorderedWindow
	Classes
	BorderedWindow
	BorderedWindowFrame

	Functions

	DTBrowser
	Classes
	Functions

	DTBrowserWindow
	Classes
	BrowserWindow

	Functions

	DTButton
	Classes
	Button

	Functions

	DTCallback
	Classes
	Callback

	Functions

	DTCheckBox
	Classes
	CheckBox

	Functions

	DTColumnLayoutManager
	Classes
	ColumnLayoutManager

	Functions

	DTComponent
	Classes
	Component

	Functions

	DTConfirm
	Classes
	Functions

	DTContainer
	Classes
	Container

	Functions

	DTContent
	Classes
	Content

	Functions

	DTDetailsRow
	Classes
	DetailsRow

	Functions

	DTDialogWindow
	Classes
	DialogWindow

	Functions

	DTDragManager
	Classes
	Functions

	DTDropDownComboBox
	Classes
	DropDownComboBox

	Functions

	DTEventGrabber
	Classes
	EventGrabber

	Functions

	DTEventObject
	Classes
	EventObject

	Functions

	DTFileDownload
	Classes
	Functions

	DTFileSharing
	Classes
	AccessControlList

	Functions

	DTFileSystem
	Classes
	Functions

	DTFileUpload
	Classes
	Functions

	DTFlowLayoutManager
	Classes
	FlowLayoutManager

	Functions

	DTFontProber
	Classes
	FontMetrics

	Functions

	DTGridLayoutConstraints
	Classes
	GridLayoutConstraints

	Functions

	DTGridLayoutManager
	Classes
	GridLayoutManager

	Functions

	DTHelpWindow
	Classes
	Functions

	DTHTMLBox
	Classes
	HTMLBox

	Functions

	DTHTMLBrowser
	Classes
	HTMLBrowser

	Functions

	DTIconsView
	Classes
	IconsView

	Functions

	DTImageArea
	Classes
	ImageArea

	Functions

	DTImageButton
	Classes
	ImageButton

	Functions

	DTImageResize
	Classes
	Functions

	DTIncrSlider
	Classes
	IncrSlider

	Functions

	DTKeyEvent
	Classes
	KeyEvent

	Functions

	DTLabelledTextBox
	Classes
	LabelledTextBox

	Functions

	DTLayoutManager
	Classes
	LayoutManager

	Functions

	DTLinkArea
	Classes
	LinkArea

	Functions

	DTListBox
	Classes
	ListBox

	Functions

	DTMenu
	Classes
	Menu

	Functions

	DTMenuBar
	Classes
	MenuBar

	Functions

	DTNamedCallback
	Classes
	NamedCallback

	Functions

	DTNativeComponent
	Classes
	NativeComponent

	Functions

	DTNativeTextInputBox
	Classes
	NativeTextInputBox

	Functions

	DTObjectStore
	Classes
	PersistentObject
	RootPersistentObject

	Functions

	DTPane
	Classes
	Pane

	Functions

	DTPersistentArray
	Classes
	PersistentArray

	Functions

	DTProgressBar
	Classes
	ProgressBar

	Functions

	DTPrompt
	Classes
	Functions

	DTQuestion
	Classes
	Functions

	DTQueue
	Classes
	Queue

	Functions

	DTRadioButtonGroup
	Classes
	RadioButtonGroup
	Functions



	DTRectangle
	Classes
	Rectangle

	Functions

	DTRendezvous
	Classes
	Rendezvous

	Functions

	DTScrollBar
	Classes
	ScrollBar

	Functions

	DTScrollingTextBox
	Classes
	ScrollingTextBox

	Functions

	DTScrollPane
	Classes
	ScrollPane

	Functions

	DTSlideDialog
	Classes
	SlideDialog

	Functions

	DTSlider
	Classes
	Slider

	Functions

	DTStack
	Classes
	Stack

	Functions

	DTStyle
	Classes
	Style

	Functions

	DTTableLayoutConstraints
	Classes
	TableLayoutConstraints

	Functions

	DTTableLayoutManager
	Classes
	TableLayoutManager

	Functions

	DTTabView
	Classes
	TabView

	Functions

	DTTextBox
	Classes
	TextBox

	Functions

	DTTextImageLabel
	Classes
	TextImageLabel

	Functions

	DTTextInputBox
	Classes
	TextInputBox

	Functions

	DTTextInputBox2
	Classes
	TextInputBox2

	Functions

	DTTextInputField
	Classes
	TextInputField

	Functions

	DTTextLabel
	Classes
	TextLabel

	Functions

	DTTextTreeView
	Classes
	TextTreeView

	Functions

	DTTimer
	Classes
	Timer

	Functions

	DTTransientDialogWindow
	Classes
	TransientDialogWindow

	Functions

	DTUserData
	Classes
	Functions

	DTWindow
	Classes
	Window

	Functions

	DTWrappingTextBox
	Classes
	WrappingTextBox

	Functions


	Appendix I: The Console commands
	Appendix II: KeyEvent Constants
	Appendix III: Color Values

