WorldView for Developers
User Guide

PLATINUM

Version 2.1

PLATINUM

OOOOOOOOOO

Title and Publication Number
PLATINUM Publication Number: WVD-X-210-UG00-00

Printed: June 1, 1998

Information in this guide is subject to change without notice and does not constitute a
commitment on the part of PLATINUM technology, inc. It is supplied on an “as is” basis
without any warranty of any kind, either explicit or implied. Information may be changed
or updated in this guide at any time.

Copyright Information

PLATINUM WorldView for DEvelopers is ©copyright 1997- 1998 by PLATINUM
technology, inc. and its subsidiaries. This guide is ©copyright 1997 - 1998 by PLATINUM
technology, inc., and its subsidiaries and may not be reproduced in whole or in part, by any
means, without the written permission of PLATINUM technology, inc. and its subsidiaries.

Names marked ™ or ® and other company and product names may be trademarks or
registered trademarks of their respective vendors or organizations.

Mailing Address

PLATINUM technology, inc.
1815 South Meyers Road
Oakbrook Terrace, Illinois
60181-5235

Table of Contents B

Preface
Philosophy X
Contacting Technical Support Xi
Technical Support Programsc..ouiiiniinnenninnenn.. Xi
Complimentary SUPpOrtt Xi
Fee-Based Technical Support i, Xii
Before You Contact Technical Support xiii
Contacting PLATINUM XVi
About ThisGuide XVi
Conventions XiX
Related Publications i XX

1 » WorldView for Developers Features

Features e 1-2
WorldView Control e 1-3
The Power Of VRML e e 1-4
ACtiveX SUPPOIt . ..o 1-4
Embedding Support 1-4
The WorldView ProductLine 1-5

2 e« Getting Started

Installation 2-2
System Requirements 2-2
Software Requirements i 2-2
Installing WorldView for Developers coivvion... 2-3
Runtime Installation 2-5

Uninstallation 2-6

PLATINUM WorldView for Developers User Guide i m

Table of Contents

3 e

The WorldView Browser

The WorldView Browser it 3-3
Support for VRML 2.0 oo 3-3
VRML2.ONOdES i i 3-4
data: Protocol 3-11
WorldView's Full Color Settingo .. 3-12
Support for JavaScript 3-13
JavaScript and the VRML Console 3-13
Variable Scoping ... 3-13
Type Conversion in JavaScript Expressions 3-13
Unsupported Functions i i 3-14
Support forthe Java EAl 3-15
Requirements for Internet Explorer 3-15
Using WorldView's Java EAl in Web Browsers 3-15
Support for Java in Script Nodes i 3-17
Java 1.1 Support 3-17
System.out and System.err 3-17
SECUNLY ..t e 3-17
Using the EMBED tag in HTML documents 3-18
WorldView EXTERNPROTO Extensions, 3-19
BillboardText 3-19
BrowserSettings 3-20
PopupText 3-23
StreamingAudioClipt e 3-26
DirectX Files 3-28

WorldView for Developers Containers

Introduction 4-3
Macromedia Director Xtrasc i 4-3
Microsoft Visual CH++o 4-4
Addingthe Component i 4-4
Using the Componentina Window 4-5
Controlling the Component i, 4-5
Adding the Component to a DialogBox 4-6
Embedding in C++ atRuntime 4-6

PLATINUM WorldView for Developers User Guide

Table of Contents =

MicrosoftJava VM 4-7
Embedding the WorldView Component 4-8
Accessingthe COM APL i 4-9
Using Standard Java EAl i 4-10
Microsoft Java and ActiveX Integration 4-10
Embedding in J++atRuntime 4-11
SAMPIES ..o 4-11

Microsoft Visual Basic i 4-12
Addingthe Component i, 4-12
Positioning and Resizing the Control in a Visual Basic Form 4-13
Getting a Referencetothe Control 4-13
Getting a Reference to the VrmIBrowser Object 4-14
Adding a VRML Primitive tothe Scene 4-14
Removing a Node fromtheScene 4-16
Changing the Fields of a Node ina VRML Scene 4-17
Receiving Events froma VRML Scene 4-18
Passing Arraysto Methods il 4-19
Invoking an OCX from the Scriptnode 4-20
Embedding in Visual Basicat Runtime 4-21
SAMPIES o 4-21

Working with Web Pages: HTMLand Java 4-22
Getting a Referencetothe Control 4-22
Embedding a WorldView for Developers File in an HTML Page 4-23
Getting a Reference to the VrmIBrowser Object 4-24
Adding a VRML PrimitivetotheScene 4-26
Removing a Node fromtheScene 4-27
Changing the Fields of a Node ina VRML Scene 4-28
Receiving Events from the VRML Scene 4-29

PLATINUM WorldView for Developers User Guide iii m

m Table of Contents

v

5 « WorldView for Developers Runtimes

Generating Runtime Applications 5-2
Requirements for Runtime Applications 5-2
Including your own Help files i 5-5
WorldView License Agreementc.. ottt 5-5
Embedding WorldView for Developers at Runtime 5-6
Embedding in C++ atRuntime 5-6
Embedding in J++atRuntime 5-7
Embedding in Visual Basicat Runtime 5-7

The WorldView COM Object

INtroducCtion e 6-2
IWorldView Interface i 6-3
IWorldViewDeveloper Interface, 6-4

WorldView OLE Automation Interface
WorldView OLE Automation Interface 7-2

External Authoring Interface using COM

Introduction 8-2
Using WorldView's COM APIfrom C++ 8-3
Using COM fromJavat 8-5
Using WorldView’s COM API from other Languages 8-6
WorldView for Developers COM APl Library 8-6

PLATINUM WorldView for Developers User Guide

Table of Contents =

9 « WorldView for Developers Objects

WorldView External Scripting Objects’ Structure 9-9
VrmiBaseNode Objects 9-11
VimiBaseNode e 9-12
VIMINOE 9-13
VrmiScriptNode 9-15
VrmiIBrowser Object 9-17
VrmlEvent Object 9-20
VrmlEventOutObserver Object 9-21
VrmlField Objects i 9-22
VimiIField e 9-23
VrmiConstField i e 9-25
VrmICONStMFCOIOr 9-26
VimlConstMFFloat 9-28
VimilConstMField i 9-29
VrmIConstMFINt32 9-31
VrmlConstMFENode 9-33
VrmiConstMFRotation i 9-35
VrmIConstMEString ... 9-37
VimICONStMFTImMe e e 9-39
VrmIConstMFVeC2f 9-41
VrmIConstMFVec3f 9-43
VrmICoNnstSFBOOI 9-45
VrmICONStSFCOIOr e 9-47
VrmlConstSFFloat 9-49
VrmlConstSFImage 9-51
VimIConstSFINt32 9-53
VrmIConstSENoOde e 9-54
VrmiConstSFRotation 9-56
VrmICoNnstSFString o 9-58
VrmICONStSFTIime e e 9-59
VrmIConstSFVec2f 9-61
VrmIConstSFVeC3f 9-63
VIMIMFECOIOr . .. e e e e e e e 9-65
VImIMFFIoat e 9-68

PLATINUM WorldView for Developers User Guide v N

m Table of Contents

Vi

10

11

VImIMFEIeld e e 9-71
VIMIMFEINt32 .. e 9-73
VIMIMENOE e e 9-75
VrmIMFRotation 9-79
VImIMESEHNGo 9-82
VIMIMETIMe .. e et e e 9-85
VIMIMEV e .. e 9-88
VIMIMEV e 3t .. 9-91
VIMISFBOOI e 9-94
VIMISFCOIOr ... e 9-96
VIMISFFIoat 9-98
VrmISFImage 9-99
VIMISFINt32 .. 9-102
VIMISENOdE 9-103
VrmISFRotation 9-105
VImISEString 9-107
VIMISFTIMeE . . 9-109
VIMISEVeC2f .. 9-111
VIMISEVeC3f .. e 9-113
VrmlObjectFactory Interface 9-115
VrmiScriptimplementation Interface o 9-125

Disabled Interfaces
Disabled Interfaces 10-2

Error Handling

Introduction 11-2
Returned ErrOrs e 11-2

PLATINUM WorldView for Developers User Guide

Table of Contents =

A « Sample Applications

Sample Applications A-2
Invoking an OCX from a Script node: OCXDemo A-3
Software Requirements il A-3
Installation A-3
Components A-3
Instructions A-4
Embedding WorldView in a C++ Application: Tiny3D A-4
Software Requirements i, A-5
Installation A-5
Components A-5
Instructions A-6
Embedding WorldView in a Java Application: JWorldViewContainer A-7
Software Requirementst A-7
Installation A-7
Components A-7
INStructionso A-8
Index

PLATINUM WorldView for Developers User Guide vii m

E Table of Contents

W viii PLATINUM WorldView for Developers User Guide

Preface

Welcome to WorldView for Developers.

WorldView for Developers is an enhanced version of PLATINUM’s
industry-acclaimed VRML 2.0 browser: WorldView. WorldView for
Developers offers you the ability to integrate WorldView’s advanced 3D
rendering technology into your own applications.

This manual is designed to acquaint you with the use of WorldView for
Developers. It describes inserting the WorldView for Developers control
into supported containers, generating runtime applications which
embed the control, and lists and defines all objects, interfaces, properties,
and methods available through the control. This manual also provides
several working samples to demonstrate specific features and functions
of WorldView for Developers, as well as a complete list of errors returned
by the product.

PLATINUM WorldView for Developers User Guide ix m

m Preface

Philosophy

Philosophy

PLATINUM technology, inc. (PLATINUM), one of the top 20 software
vendors worldwide, supports IT organizations by partnering with
companies to manage and improve business software operations.
PLATINUM's products and services help ensure that companies obtain a
better return on their enterprise by maximizing internal IT service levels
and focusing enterprise computing efforts on solutions that create a
competitive advantage in the marketplace. PLATINUM provides
integrated solutions for database management, systems management,
business intelligence, application lifecycle, data warehousing, and Year
2000 initiatives.

PLATINUM's VRML software is one part of PLATINUM's ongoing, long-
term strategy to help IT organizations gain better competitive advantage
through the deployment of next-generation computing solutions and
next-generation user interfaces. PLATINUM recognizes the value of
VRML as a breakthrough technology and is committed to bringing the
value of VRML to the mainstream, to developers, and to enterprise IT
organizations. Current VRML product offerings are specifically designed
to introduce individuals and companies to the power of VRML.
PLATINUM's VRML services group partners with world-class, global
organizations that wish to deploy sophisticated applications of VRML
technology. PLATINUM is also integrating VRML into other PLATINUM
products, services and technology offerings.

B X PLATINUM WorldView for Developers User Guide

Preface m

Contacting Technical Support

Contacting Technical Support

Technical Support Programs

PLATINUM technology, inc. has developed a mix of complimentary and
fee-based technical support programs for WorldView for Developers
customers in the U.S. and Canada. These programs have been designed
to deliver fast, flexible, and comprehensive service to all WorldView for
Developers users.

Complimentary Support

User Guide. This manual should be considered the first step in trouble-
shooting any problems encountered using WorldView for Developers.

On-line Help. WorldView for Developers’ on-line help replicates the
information found in this User Guide. On-line help is provided simply
for your convenience.

ReadMe. This file contains a list of known issues and solutions that were
identified prior to this release. The ReadMe file is available from the
WorldView for Developers’ Program Menu.

WorldView Help Index. This file provides access to the WorldView
browser help, including the User’s Guide, Developer’s Guide, ReadMe,
and FAQ for that product. This file is installed with WorldView for
Developers, in the Help directory, and should be consulted when
browser specific problems are encountered.

VRML 97 Specification. We recommend that any developer using this
product also consult the VRML 97 Specification, which may be found at
http://www.vrml.org/Specifications/VRMLI7.

Telephone Support. Registered WorldView for Developers users receive
30 days of free telephone support. A valid WorldView for Developers
registration number is required for this option. See the support
document included in the WorldView for Developers package for
additional information. This option is not available for the trial version.

PLATINUM WorldView for Developers User Guide xi m

m Preface

Contacting Technical Support

Email Support. Registered WorldView for Developers users may submit
support questions via email to the PLATINUM support Web site (http://
support.platinum.com). A valid WorldView for Developers registration
number is required for this option. See the support document included
in the WorldView for Developers package for additional information.
This option is not available for the trial version.

Fee-Based Technical Support

mXxii

Registered users of WorldView for Developers can take advantage of
PLATINUM'’s fee-based support programs when their initial 30 days of
free telephone support has expired. A valid WorldView for Developers
registration number is required to use this option. See the support
document provided in the WorldView for Developers package for
additional information. Fee-based programs are not available for the trial
version.

Telephone Support. $40 (US) per 20-minute call via 900 number, $2
(US) per minute thereafter. 8:00AM to 7:00PM CST. Monday-Friday.

All offerings, terms and prices are subject to change. For the latest
information on fee-based technical support options, including contact
information for WorldView for Developers technical support, refer to the
Frequently Asked Questions (FAQ) pages for WorldView for Developers,
which are available at the PLATINUM support Web site (http://
support.platinum.com).

PLATINUM WorldView for Developers User Guide

Preface m

Contacting Technical Support

Before You Contact Technical Support

If you think you need technical support:

Please read everything relevant to the problem in the User Guide or
on-line help. Check the User Guide and on-line help indices for more
references to the topic. More information on a procedure or feature
may be found in a separate section.

Refer to the WorldView for Developers ReadMe file for a list of known
issues and solutions that were identified prior to WorldView for
Developers' initial release.

Refer to the WorldView browser help index for more information on
browser functionality, including a list of know issues and solutions
specific to the WorldView browser.

Visit the Frequently Asked Questions (FAQ) pages on the PLATINUM
technology, inc. support Web site (http://support.platinum.com) for a
complete list of known issues and solutions identified after this
WorldView for Developers’ release.

If something used to work and now no longer works, try to identify
what may have changed. Perhaps you installed new software or
changed some settings.

Create a new file and try to reproduce the problem there. If the
problem does not appear in the new file, compare the new file with
the old file to identify and eliminate the differences.

Copy the file, and begin deleting unrelated sections until the problem
is solved to identify the exact location of the problem

Note ¢ Many issues that you encounter may be solved by following
the steps listed above.

PLATINUM WorldView for Developers User Guide xiii =

m Preface

Contacting Technical Support

If you still need help:

If you still need help at this point, a little preparation can save you time
and money, and allow the support representative to help you more
quickly. Please complete the following checklist before contacting
technical support:

= Try to narrowly define the problem so that you can repeat the steps
that lead to it and specifically identify when and how it occurred. The
more clearly the problem is defined the better our support
representative will be able to provide a solution.

m Be able to provide the following information:
e Product name, version number, and registration number
e Development environment name and version number

e Type of computer, such as Pentium or Pentium Pro, local-bus or
remote bus

e Graphics card manufacturer, model, and driver version number

¢ Sound card manufacturer and model name

e Web browser name and version number

e VRML browser name and version number

e Operating system name and version number

e Amount of memory installed

e Amount of free hard disk space

e Screen resolution (screen size in pixels, for example, 1024 by 768)
e Screen color depth (for example,16-bit, or thousands of colors)

e A list of external devices connected to the computer

e Brief description of the problem or error, and the specific text of
any error messages

B Xiv PLATINUM WorldView for Developers User Guide

Preface m

Contacting Technical Support

This information will help us pinpoint and solve your problem more
quickly.

Please note that technical support can only answer installation,
configuration, and other questions specific to WorldView for Developers.
For questions concerning VRML, 3D graphics, or other software products,
we recommend that you visit the appropriate vendor’s support site.

To send Email to PLATINUM Technical Support, use:
Internet support-worldview@platinum.com

Note * WorldView for Developers users must preface the subject line
of email messages to support-worldview@platinum.com with their
product registration number. This number can be found on either the
registration card or the license agreement, both of which are available
in the WorldView for Developers package.

To contact PLATINUM Technical Support, use:

USA or Canada, toll free 800-655-9983 (first 30 days)
USA or CANADA, fee-based 900-555-PLAT (after 30 days)

Note ¢ Telephone support is available only to registered WorldView
for Developers users.

For WorldView for Developers ordering information, call:

USA or Canada, toll free 800-373-7528
Illinois 630-620-5000

PLATINUM WorldView for Developers User Guide Xv m

m Preface

Contacting PLATINUM

Contacting PLATINUM

You can contact us with any questions or problems you have. You will be
directed to an experienced software engineer familiar with PLATINUM
WorldView for Developers.

For product assistance or information, contact:

USA or Canada, toll free 800-442-6861

Ilinois 630-620-5000

FAX 630-691-0708 or 630-691-0406
Internet info@platinum.com

World Wide Web http://www.platinum.com

For general information on PLATINUM technology, inc.,
contact:

USA or Canada, toll free 800-442-6861

Illinois 630-620-5000

FAX 630-691-0708

Internet info@platinum.com

World Wide Web http://www.platinum.com

Our Mailing Address is:

PLATINUM technology, inc.
1815 South Meyers Road
Oakbrook Terrace, IL 60181-5235

B Xvi PLATINUM WorldView for Developers User Guide

Preface m

About This Guide

The PLATINUM WorldView for Developers User Guide explains features and
interfaces available in WorldView for Developers.

About This Guide

This guide assumes that the appropriate PLATINUM WorldView for
Developers components have been installed on your machine. The
instructions for installing the product are in the Installation Guide.

Ch.

No.

Chapter Name

WorldView for Developers
Features

Getting Started

The WorldView Browser

WorldView for Developers
Containers

WorldView for Developers
Runtimes

The WorldView COM
Object

WorldView OLE
Automation Interface

Content Description

Introduces the functions and features
of WorldView for Developers.

Outlines the installation and
uninstallation process for both
WorldView for Developers and its
generated runtime applications.

Provides a general introduction to the
requirements, properties, and
extensions of the WorldView browser.

Describes loading the control,
generating runtime applications, and
techniques specific to supported
development containers.

Lists requirements for runtime
applications generated using
WorldView for Developers.

Describes the WorldView COM obiject,
and lists and defines its properties and
methods.

Defines the OLE Automation Interface,
a superset of the IWorldViewDeveloper
interface visible to Visual Basic users.

PLATINUM WorldView for Developers User Guide

Xvii =

m Preface
About This Guide

Ch.
No. Chapter Name Content Description
8 External Authoring Describes accessing WorldView's
Interface using COM External Authoring Interface using
Microsoft’'s Component Object Model
(COM).

9 WorldView for Developers Describes and defines the Objects
Objects available in WorldView for Developers
External Authoring Interface.

10 Disabled Interfaces Describes interfaces which you may be
able to see in Visual Basic, but which
are disabled, and will return errors.

11 Error Handling Lists and defines errors returned using
WorldView for Developers.

A Sample Applications Offers several sample runtime
application samples for your use.

B Xxviii PLATINUM WorldView for Developers User Guide

Preface m
Conventions

Conventions

Some or all of the following conventions appear in this guide:

Symbol or

Type Style Represents Example

Bold a new term ...called a source object.
Alternate (online only) hotlinked ...see Chapter 3, Data
color cross-references to other Migration.

sections in this guide; if you
are viewing this guide online
in PDF format, you can click
the cross-reference to jump
directly to its location

Italic words that are emphasized ...the entry after the
current entry...

the titles of other documents PLATINUM General
Facilities Reference Guide

syntax variables COPY fiTename
Monospace directories, file names, &HIGHLVL.SRCLIB

command names, computer

code

computer screen text, system Copy file? Y/N
responses, command line

commands
Monospace what a user types ...enter RUN APP.EXEin the
bold Application field
<> the name of a key on the Press <Enters>.
keyboard
4 choosing a command froma File » Import » Object

cascading menu

PLATINUM WorldView for Developers User Guide Xix =

m Preface

Related Publications

Related Publications

As you use this PLATINUM WorldView for Developers User Guide, you
might find it helpful to have these additional files available for reference:

m PLATINUM WorldView for Developers Installation Guide

m PLATINUM WorldView browser help files, available in HTML format
from the Help directory of your WorldView for Developers
installation.

m The VRML 97 Specification. The VRML specification is available from
http://www.vrml.org/Specifications/VRMLI7.

B XX PLATINUM WorldView for Developers User Guide

=]

WorldView for Developers
Features

Featuresovnniiiiii ittt ittt teetetatieacnanennns 1-2
WorldView Controlccoiuiiiiiiiiiiiiiiieieieneieieneccnsnenenenss 1-3
The Powerof VRIMLiiiiiiiriiiiiiiieiererererarienenesesasasasacans 1-4
ACtVEX SUPPOIT . .oviiiiiiiiiiiiiiiiiieieieieieiecnenenenesesscecncncnns 1-4
Embedding SUPPOItcouiininiiiiiiiiiiiiiiiiiiiiiiiiieieiencneanens 1-4
The WorldView ProductLinec.coeiiiiiiiiiieieieieiiienenenenss 1-5

PLATINUM WorldView for Developers User Guide 1-1 =

m WorldView for Developers Features

...INTERACTIVE 3D THROUGH ACTIVEX

WorldView for Developers is an enhanced version of PLATINUM’s
industry-acclaimed VRML 2.0 browser: WorldView. WorldView for
Developers offers you the ability to integrate WorldView’s advanced 3D
rendering technology into your own applications.

WorldView for Developers is a superset of the WorldView browser.
Because WorldView for Developers is based on WorldView, all of the
features that have made WorldView so popular are included. These
include:

Features
Features
" 1-2

Complete VRML 2.0 specification compliance
Direct3D hardware acceleration

Simple, intuitive user interface

Windows 95 and Windows NT 4.0 compatibility
Programmability via:

e Java External Authoring Interface (EAI)

e Java in Script nodes

e JavaScript

PLATINUM WorldView for Developers User Guide

WorldView for Developers Features =

WorldView Control

WorldView Control

Based on the successful WorldView browser, WorldView for Developers
exposes a variety of properties, methods, and events to the developer so
that they may fully control their application’s behaviors.

Navigation: You may disable WorldView’s built-in navigation system and
programmatically set and manipulate the user’s view of the VRML scene.
Developers may also hide WorldView’s toolbars and menus, and replace
them with their own.

External Authoring Interface (EAI): WorldView for Developers recreates the
EAI with ActiveX COM interfaces, so developers using any programming
language, such as C++ or Visual Basic, may take advantage of its features.
A draft standard for interfacing external Java applications to a VRML
browser, EAI allows programs running outside of the browser to create
and manipulate objects in the VRML scene interactively at runtime, and
to interact with “scripts” in the VRML scene.

Rendering Control: WorldView for Developers allows you to alter the
display of the scene, including switching between different color and
shading modes. This switching may take place on the fly.

Scene Loading: You can load scenes into WorldView by supplying a file or
an URL. Data may be loaded from a variety of sources, including
databases and dynamically-created files.

PLATINUM WorldView for Developers User Guide 1-3 =

m WorldView for Developers Features

The Power of VRML

The Power of VRML

Just as HTML is the standard for “rich text” in Internet-aware
applications, VRML is the standard for interactive 3D. VRML provides not
only a definition for 3D geometry and lighting, but also enables
integration of audio, images, and even Java and Javascript programs to
control the “scene” and the user’s interaction with it. The VRML viewer
provides a complete runtime environment for simulations. This power is
provided transparently to the developer using WorldView. At a
minimum, developers provide a pointer to a VRML file and WorldView
does the rest. Many alternatives for exercising finer control are also
provided.

ActiveX Support

WorldView for Developers provides complete support for Microsoft's
ActiveX (OCX) standard for software components, enabling it to be used
by applications developed in virtually any Windows development
environment, including Microsoft’s Visual Basic and Visual C++. By
supporting the full OCX interface (not simply the “lite” ActiveX interface
used by some ActiveX controls) WorldView for Developers is able to
integrate seamlessly with the user’s development environment. Both
early (compile time) and late (runtime) binding is also supported.

Embedding Support

Until now, writing a 3D graphics application meant using a low-level
rendering library like OpenGL or Direct3D, or worse, “hand coding.”
WorldView for Developers makes this unnecessary by doing the low-level
3D work for you. By embedding WorldView for Developers in your
application, you can take advantage of WorldView's advanced 3D
technology. This saves you an enormous amount of development time,
and lets you concentrate your resources where you most want to spend
them: content.

PLATINUM WorldView for Developers User Guide

WorldView for Developers Features =
The WoridView Product Line

The WorldView Product Line

The WorldView Browser, WorldView for Developers, and WorldView for
Developers runtime copies are three parts of the same product line, with
the WorldView browser as its basis. Either WorldView for Developers or
one of its runtime copies may be installed on a machine with the
WorldView browser.

Note ¢ It is important to note that installing a WorldView for
Developers runtime application on your machine will overwrite your
copy of WorldView for Developers, making it necessary for you to
reinstall.

WorldView is a VRML browser plugin for Netscape Navigator and Internet
Explorer. It is launched when a file with the model/vrml MIME type and/
or the .wrl extension is loaded.

WorldView for Developers works in development environments such as
Macromedia’s Director, Visual Basic, and Visual C++ to allow authors to
create applications using WorldView technology.

WorldView for Developers runtimes are distributed with applications created
using WorldView for Developers. A user may have any number of
applications that install the ActiveX control on one machine. Installing
an application that uses the runtime will not install the functionality of
the full WorldView for Developers SDK.

WorldView Professional is an extended version of the WorldView browser,
which allows users to embed 3D VRML objects into Microsoft Office
applications. Only one of these two applications (WorldView or
WorldView Professional) may be present on a machine at any time. Both
function as a VRML viewer from within an internet browser.

PLATINUM WorldView for Developers User Guide 1-5 =

m WorldView for Developers Features
The WorldView Product Line

All WorldView products require that the following components be
installed:

m dx5eng.exe (DirectX 5) 3.62 MB

http://www.microsoft.com/msdownload/directx/dxf/enduser5.0/
default.htm

m dxmweb.exe (DirectShow) 3.83 MB
http://www.microsoft.com/directx/resources/dx5mediaruntime.htm
= msjavax86.exe (VM for Java) 3.02 MB

http://www.microsoft.com/java/vm/vmdownload.htm

m 1-6 PLATINUM WorldView for Developers User Guide

Getting Started

This chapter describes installing WorldView for Developers on your
machine, and the components necessary to install the generated runtime
applications on your customers’ machines.

Installationcccieniuiiieiiiiiiiiiiiiiiieiiiiiiiieieiieieieicaieneens 2-2
System Requirements i 2-2
Software Requirements i 2-2
Installing WorldView for Developersoiiiiiiiinnenn. 2-3
Runtime Installation 2-5
Uninstallationcociiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieienencnenens 2-6

PLATINUM WorldView for Developers User Guide 2-1 =

m Getting Started
Installation

Installation

System Requirements
= Windows 95 or NT 4.0
s 120 mhz Pentium PC (minimum)
= 32 MB RAM (minimum)

m 3D accelerator card

Software Requirements
= Java VM (for including Java)
» DirectShow (for including Movie Texture)

m DirectX 5

Note ¢ The Java VM is required for WorldView for Developers only if
you are using Java in your application. If it is not yet installed on your
machine, it may be obtained from: http://www.microsoft.com/java/
vm/vmdownload.htm. If your application uses Java, the Java VM will
also be required by your end users.

n 2-2 PLATINUM WorldView for Developers User Guide

Getting Started =

Installation

Installing WorldView for Developers

To install WorldView for Developers,

1 exit all other Windows programs,

2 click on the WVDev_Setup.exe file, and

3 follow the installation Wizard. You will be prompted to enter your
name and company in the provided fields, then select one of two
options: No Password, or Password.

Select No Password to install an evaluation copy of WorldView for
Developers. This will install a copy of WorldView for Developers
which will expire 30 days after installation. (The time you have left
will be shown in the About Box for your convenience.)

Select Password if you have purchased WorldView for Developers,
and enter your password in the field provided. This will install a
fully enabled version on your machine.

4 Follow the Install Wizard prompts to complete installation.

By default, the WorldView for Developers installer (W/Dev_Setup.exe)
copies the following files to your machine, in the locations listed:

WorldView for Developers 2.1\

axWorldView.zip
License.txt
LicenseEnabler.exe
MMAR . AX

MMVR. AX

ReadMe.txt
runtimeGenerator.exe
WorldView.lic
WorldView.ocx

WorldView for Developers 2.1\Distribution\

Help\ (WorldView browser Help files)
Axdist.exe (a third party installer)
WVLicense.txt

PLATINUM WorldView for Developers User Guide 2-3 =

m Getting Started

Installation

m 2-4

WorldView for Developers 2.1\Help\
Images\ (all files)
NETWH32.d11
WorldView browser HTML help files

WVforDev.cnt
WVforDev.hlp
WVforDev.pdf

WorldView for Developers 2.1\Include\
WVInterface.h (header file for C++ users)

WorldView for Developers 2.1\Lib\
WVGuid.1ib (lib file for C++ users)

WorldView for Developers 2.1\Samples\
JWorldViewContainer\ (all files)
0CXDemo\ (all files)

Tiny3D\ (all files)

The Compact installation does not include the Help directory and files,
the Samples directory and files, or the ReadMe text in the root directory.

The WorldView.11c file is automatically generated during installation,
and is used to control both the 30 day time limit on evaluation copies of
WorldView for Developers, and to fully enable the software once it has
been purchased. This file may not be redistributed.

The installation also creates these Start Menu shortcuts:

Start Menu » PLATINUM WorldView for Developers 2.1 »
Help (launches WVforDev.h1p)
ReadMe (launches ReadMe.txt)
BuyMe (launches TicenseEnabler.exe)
Copy Key to Clipboard (launches runtimeGenerator.exe)

The BuyMe item is used to enable a trial version of WorldView for
Developers. After contacting our sales department, and receiving a
password, simply select this item from the start menu and follow the
directions to fully enable your copy of WorldView for Developers.

PLATINUM WorldView for Developers User Guide

Getting Started =
Installation

The Copy Key to Clipboard item is used to enable runtimes generated
using C++ or J++. Simply select this item from the start menu to have the
enabling string copied to the clipboard, then paste into your application.

This installer does not reboot.

Runtime Installation

Applications created using WorldView for Developers require the same
components as WorldView:

m DirectX 5,
m DirectShow (if the application contains Movie Textures), and the
m Java VM (if the application contains Java).

These components are not included in the WorldView for Developers
installer, and should be installed by the application itself, if necessary.
These components may be licensed from Microsoft for free. See:

http://www.microsoft.com/java/vm/vmdownload.htm,
http://www.microsoft.com/directx/resources/enddl.htm, and
http://www.microsoft.com/java/vm/vmdownload.htm for details.

Your application installer must also run the WorldView for Developers
Runtime installer. Run WVDevRt_Setup.exe to install the OCX and DLLs
required by WorldView.

PLATINUM WorldView for Developers User Guide 2-5 =

m Getting Started

Uninstallation

Uninstallation

m 2-6

To uninstall, simply select Add/Remove Programs from the Control
Panels folder, select PLATINUM WorldView for Developers from the
program list, and click Remove.

If you have used VB with WorldView for Developers, two files may have
been generated in the WorldView for Developers folder:

WORLDVIEWLib.TWD, and

WORLDVIEW. oca.

If these files are present, you must manually delete the WorldView for
Developers folder to complete uninstallation.

PLATINUM WorldView for Developers User Guide

= 3

The WorldView Browser

This chapter provides a general introduction to the requirements,
properties, and extensions of the WorldView browser.

The WorldVieWw BrOWSErouveiiiinieieieieeeeieneeenesccecanenens 3-3
SUPPOrtfOr VRML 2.0 . ..viutiiiiiiiiiiiiieiieitieciecnenecsscnscnccnanns 3-3
VRML 2.0 NOAES ... o e e e 3-4
data: Protocol 3-11
WorldView's Full Color Setting, 3-12
Support for JavaScriptcoiiiiiiiiiiiiiiiiiiiiii it i 3-13
JavaScriptandthe VRML Console oo, 3-13
Variable SCOpINgG 3-13
Type Conversion in JavaScript Expressions 3-13
Unsupported Functions o i i 3-14
Supportforthe JavaEAIcciiuiiniiiiiiiiiiiiiiiieiieneenecnenns 3-15
Requirements for Internet Explorer oo 3-15
Using WorldView’s Java EAl in Web Browsers 3-15

PLATINUM WorldView for Developers User Guide 3-1 =

® The WorldView Browser

Support for Javain Script Nodesccoiviiiiiiiiiiiiiiirieiennnnss 3-17
Java 1.1 Support 3-17
System.out and System.err 3-17
SOCUNIY . ettt e 3-17
Using the EMBED tag in HTML documents...........cooeveieiinienennes 3-18
WorldView EXTERNPROTO EXtensionsccccevivieieienenecncnnns 3-19
BillboardTextt 3-19
BrowserSettings 3-20
POpUPTEXt . ..o 3-23
StreamingAudioClipt 3-26
DIrectX Files ...cuvvnenininiiiiiiiieieiiiiieieieeenenecesencncesenenes 3-28

PLATINUM WorldView for Developers User Guide

The WorldView Browser =
The WorldView Browser

The WorldView Browser

This chapter describes issues specific to the development of VRML
content for use with the WorldView browser. It contains information for
both WorldView for Netscape Navigator and WorldView for Internet
Explorer.

Please be sure to consult the WorldView Release Notes for information
about known bugs and important changes.

Support for VRML 2.0

This section describes details of WorldView's VRML 2.0 implementation,
including known bugs.

WorldView is fully compliant with the Minimum Conformance
requirements in the ISO/IEC DIS 14772-1 VRML 2.0 specification, dated
4 April 1997. Fields considered optional according to the Minimum

Conformance requirements are supported unless they are specifically
mentioned below.

PLATINUM WorldView for Developers User Guide 3-3 =

® The WorldView Browser

Support for VRML 2.0

VRML 2.0 Nodes

m 3-4

This section details WorldView's current implementation of the VRML
2.0 nodes. Nodes not specifically mentioned here are supported exactly
as defined in the specification.

Anchor
Only the first URL specified is used.

In WorldView for Internet Explorer only, URLs that refer to files
located on the local disk and contain viewpoint names do not
work.

Collision

When the Prevent Collisions user option is OFF, users will pass
through geometry regardless of Collision nodes. This option is ON
by default. To ensure that users will be blocked by geometry, use
NavigationInfo type NONE.

Colorinterpolator

The interpolation of colors is performed in RGB color space, not
HSV color space.

DirectionalLight

The effect of the color field is only visible when WorldView is in
full color mode. (See WorldView's Full Color Setting, below.)

ElevationGrid

In full color mode, vertex colors are supported. Because an
ElevationGrid with vertex colors is not affected by lights, the
normal field will be ignored.

When full color is off, the vertex colors are averaged to compute
face colors, which are affected by lights. With full color off, or
colorPerVertex set to FALSE, the normal field will be used. (See
WorldView's Full Color Setting, below.)

PLATINUM WorldView for Developers User Guide

The WorldView Browser =

Support for VRML 2.0

Fog
The fogType is ignored and always assumed to be LINEAR. Fog is

only visible when WorldView is in Full Color mode. (See
WorldView's Full Color Setting, below.)

FontStyle

The family field may include the names of any installed Windows
fonts, in addition to SERIF, SANS, and TYPEWRITER. If none of the
specified fonts are available on the viewer's system, SERIF is used
instead.

IndexedFaceSet

In full color mode, vertex colors are supported. Because an
IndexedFaceSet with vertex colors is not affected by lights, the
normal field will be ignored.

When full color is off, the vertex colors are averaged to compute
face colors, which are affected by lights. With full color off, or
colorPerVertex set to FALSE, the normal field will be used. (See
WorldView's Full Color Setting, below.)

IndexedLineSet

Fully supported in full color mode. With full color off, the color
field is ignored, and the emissiveColor of the Material node is used
to color the line set. (See WorldView's Full Color Setting, below.)

PLATINUM WorldView for Developers User Guide 3-5 m

® The WorldView Browser

Support for VRML 2.0

ImageTexture
Supported image file types are GIF, BMP, JPG, RAS, PPM and PNG.

The repeatS and repeatT fields are ignored.

Intermediate alpha opacities are not supported. Pixels with alpha
less than 0.5 appear fully transparent, and pixels with alpha greater
than or equal to 0.5 appear fully opaque.

Material
The ambientIntensity field is not supported.

The appearance of transparent materials can be greatly affected by
graphics accelerator cards.
MovieTexture

File types are supported through DirectShow. Audio is supported
in all formats.

The repeatS and repeatT fields are ignored. Negative values in the
speed field are ignored.

Intermediate alpha opacities are not supported. Pixels with alpha
less than 0.5 appear fully transparent, and pixels with alpha greater
than or equal to 0.5 are opaque.

When using animated GIFs as textures, the pixel width and height
must each be a power of two, for example: 256 x 128, or 64 x 64.

m 3-6 PLATINUM WorldView for Developers User Guide

The WorldView Browser =
Support for VRML 2.0

Navigationinfo
The speed field is not supported.

The first value of the avatarSize field is used to determine the
allowable distance between the user and geometry during collision
detection. Other values in this field are ignored.

The NONE type disables both toolbars, the Navigation commands
on the right mouse popup menu, and the ability to navigate using
the mouse. The user may not change these settings.

The WALK, FLY, and EXAMINE types set the initial navigation mode
when the world is loaded.

Type Browser allows

WALK Walk and Turn
FLY Walk, Turn, Pan, and Roll
EXAMINE Study

The "GoTo" function is allowed if the type includes WALK, FLY, or
ANY. "Zoom Out," Straighten Up," and viewpoint navigation are
not allowed if the type is "NONE."

If the type is ANY, viewpoint transitions triggered by Anchor nodes
or the loadURL() scripting method are animated and trigger
Sensors.

If Headlight is set to FALSE, the user may not enable the headlight.

PixelTexture
The repeatS and repeatT fields are ignored.

Intermediate alpha opacities are not supported. Pixels with alpha
less than 0.5 appear fully transparent, and pixels with alpha greater
than or equal to 0.5 are opaque.

PLATINUM WorldView for Developers User Guide 3-7 m

® The WorldView Browser

Support for VRML 2.0

PointLight

The effect of the color field is only visible when WorldView is in
Full Color mode. (See WorldView's Full Color Setting, below.)

The radius field is emulated using quadratic attenuation. If the
attenuation field is set to something other than the default (1 0 0),
the radius field is ignored.

PointSet

When Full Color is off, the color field is ignored, and the
emissiveColor of the Material node is used to color the point set.
(See WorldView's Full Color Setting, below.)

Script

Script nodes may contain Java or Javascript. (VRMLScript is
supported to the extent that it overlaps with JavaScript.) If the URL
field does not specify a file, it must begin with one of the following:

“javascript:
“vrmlscript:
Syntax: url “javascript:<script>

Or
url “vrmlscript:<script>”

The Script node recognizes the “java:” protocol, which permits
users to specify a Java class in a package directly in the VRML file.

Syntax: url “java:codebase:classname”

where codebase is the URL for the root of the Java class hierarchy,
and classname is the fully-qualified name of the Java class,
separated with periods.

The Script node also recognizes the “javabc: protocol.

Syntax: url “javabc:<base64 encoded *.class file>

PLATINUM WorldView for Developers User Guide

The WorldView Browser =

Support for VRML 2.0

If there is an error in a Script node, the browser sends a notification
to the VRML Console. Further events to the Script node are
ignored.

A line number of “0” is incorrectly reported when an error occurs
on the last line of a script contained within a Script node.

The loadURL scripting method uses only the first specified URL.
See also Support for JavaScript and Support for Java in Script Nodes.

Sound

The sound model is spherical rather than ellipsoidal. Values in the
maxFront and maxBack fields are averaged to determine the radius
of the outer sphere; minFront and minBack are averaged to
determine the radius of the inner sphere.

SpotLight
The effect of the color field is only visible when WorldView is in
Full Color mode. (See WorldView's Full Color Setting, below.)

PLATINUM WorldView for Developers User Guide 3-9 =

® The WorldView Browser

Support for VRML 2.0

® 3-10

Text

WorldView allows the user to specify how text will be generated,
and the resultant text image quality.

WorldView's default text is polygonal. Selecting the High Quality
Text option, which is on by default in the WorldView Options...
dialog, causes text to be generated as a polygonal mesh. WorldView
extracts outline curve information from the TrueType font to
produce this mesh.

When High Quality Text is not selected, text is generated by
rendering a bitmap, which is then applied as a texture map to a
simple rectangle.

Bitmapped text offers better performance when a long text string is
imported. High quality, polygonal text offers better performance
when shorter text strings are displayed, and better appearance
overall. Polygonal text maintains its outline quality at any scale.
Texture mapped text will become pixilated at close range.

The maxExtent field of the Text node is not supported when High
Quality text is used.

See the WorldView Extensions BrowserSettings section for more
information on setting Text options in the WorldView browser.

Viewpoint

If a Viewpoint node has both
e jump set to FALSE, and
e a string in the description field

the user's position will change if they choose Viewpoint from the
menu in the WorldView user interface. Changes to this Viewpoint
that occur via any other mechanism will not cause the user's
position to change, because jump is set to FALSE. To avoid this
behavior, prevent the Viewpoint from appearing in the menu by
not providing a description for it.

PLATINUM WorldView for Developers User Guide

The WorldView Browser =
Support for VRML 2.0

data: Protocol

WorldView supports the data: protocol, as required by the VRML
2.0 specification, section 4.5.4. All file types, including scripts,
movies, and audio, may be inlined in a VRML file using this
feature. The data: URL may be used for in-line inclusion of base64
encoded data, such as JPEG, GIF, and PNG files.

The data: protocol may be used in any URL field with the syntax:

data:<mimetype>,basebd;<baseb4-encoded data>
Or

data:<mimetype>;<regular text with % used to do hex characters>
An example of the second, non base64 encoded type would read:

data:model/vrml;#VRML V2.0 utf8%0AShape {%0A geometry Box
{1 50A}

PLATINUM WorldView for Developers User Guide 3-11 =

® The WorldView Browser

Support for VRML 2.0

WorldView's Full Color Setting

" 3-12

There are several features in VRML that are only visible in WorldView
when the Full Color setting is on. Full Color is off by default, but may be
controlled on a per-session basis from the “Graphics” item on the right
mouse button popup menu. The default may be changed permanently by
choosing “Options...” from the right mouse button popup menu, and
changing the setting of the “Full Color” check box in the Windows
tabbed window.

The Full Color setting has a significant effect on navigation speed.
These VRML 2.0 nodes are affected when Full Color is OFF:

m The color field for PointLight, DirectionalLight, and SpotLight is
ignored.

= Fog does not appear.

» IndexedFaceSet vertex colors are averaged to compute face colors, if
colorPerVertex is set to TRUE.

m ElevationGrid vertex colors are averaged to compute face colors, if
colorPerVertex is set to TRUE.

= The color field for IndexedLineSet is ignored, and the emissiveColor
of the Material node is used to specify the line color.

= The color field for PointSet is ignored, and the emissiveColor of the
Material node is used.

These nodes and fields are fully visible when Full Color is ON.

See the WorldView Extensions BrowserSettings section for more
information on controlling the Full Color options within the WorldView
browser.

PLATINUM WorldView for Developers User Guide

The WorldView Browser =

Support for JavaScript

Support for JavaScript

WorldView's JavaScript implementation conforms to the JavaScript
specification included in Annex C of the ISO/IEC DIS 14772-1 VRML 2.0
specification, dated 4 April 1997.

JavaScript and the VRML Console

Javascript alert statements are routed to WorldView's VRML Console.
(Select “Show VRML Console” from the right mouse Help menu.)

The Javascript print() method can be used to print information directly
to WorldView's VRML Console. The trace() method, introduced in earlier
versions of WorldView, works identically to print(). Although trace()
remains supported, you should use print() to ensure interoperability
with other browsers.

WorldView's JavaScript interpreter requires that all statements be
terminated by semicolons.

Variable Scoping

Variables declared with the var keyword are local to the function in which
they are declared. Variables not declared with the var keyword are global
to the Script node in which they are used, and are visible in all functions
of the Script node, but not in functions of other script nodes. Script node
fields and events are in the same name space as global variables.

Type Conversion in JavaScript Expressions

JavaScript automatically converts between data types when necessary
while evaluating expressions. The following table describes how
WorldView's JavaScript implementation performs conversion from each
data type to each other data type.

PLATINUM WorldView for Developers User Guide 3-13 =

® The WorldView Browser

Support for JavaScript

Find the source data type in the left column, then find the cell in that row
whose column corresponds to the destination data type. “NS” indicates
that the conversion is not currently supported by WorldView. Conversion
of any non-object into an object is not supported.

Data Type Function Number Boolean String
function error error NS
object error error true NS
Null object NS 0 false NS
number (non-zero) error true toString
number (0) error false “0”
Error (NaN) error NS NS
+ infinity error NS NS
- infinity error NS NS
false error 0 “false”
true error 1 “true”
string (non-null) NS numeric true
representation
null string error error false
Unsupported Functions

m 3-14

The JavaScript eval() function is not supported.

PLATINUM WorldView for Developers User Guide

The WorldView Browser =

Support for the Java EAI

Support for the Java EAI

The Java EAl is fully supported according to the Proposal for a VRML 2.0
Informative Annex dated 21 January 1997. It is believed to be compatible
with the EAI classes from other browsers.

WorldView uses the vrml.external.* naming convention, not the old
vrml . * naming convention.

Requirements for Internet Explorer

To access the Java EAI with WorldView for Internet Explorer, a Java applet
must be considered a “trusted applet.” This can be done in two ways:

Place the applet in a digitally signed cabinet file. This can be done using the
CabDevKit provided with the Microsoft Java SDK. The Microsoft Web site
contains additional information on using signed CAB files to distribute
EAI applets.

Put the applet's class files in your CLASSPATH environment variable. This is useful
for development purposes. Microsoft Visual J++ does this automatically
when debugging.

Using WorldView's Java EAIl in Web Browsers

The following example demonstrates using WorldView's Java EAI in
Microsoft Internet Explorer or Netscape Navigator.

PLATINUM WorldView for Developers User Guide 3-15 =

® The WorldView Browser

Support for the Java EAI

m 3-16

For Netscape Navigator, or Internet Explorer 4.0 or later, simply call
Browser.getBrowser directly in the init() method, as described below.

HTML FILE:

<HTML>

<HEAD>

<TITLEDWorldView ActiveX Control Example</TITLE>

</HEAD>

<BODY>
<embed src="MyWorld.wrl" height=500 width=400>
<applet code="MyApplet.class" height=140 width=700>

</B0ODY>

</HTML>

JAVA FILE:
import java.applet.Applet;
import vrml.external.*;

public class MyClass extends Applet
{
public void init()
{
setlLayout(new FlowLayout());
add(new Button("My Button"));
//ok to get browser now
Browser
browser=Browser.getBrowser(this);
Node node=browser.getNode();
}

public void run() ()
// QOther Methods ..

PLATINUM WorldView for Developers User Guide

The WorldView Browser =

Support for Java in Script Nodes

Support for Java in Script Nodes

The Java in Script nodes implementation is according to Annex B of the
ISO/IEC DIS 14772-1 VRML 2.0 specification, dated 4 April 1997.

Java 1.1 Support

WorldView's Java in Script nodes implementation uses the Microsoft Java
VM, and supports the Java 1.1 standard to the same extent as Microsoft
Internet Explorer 4.0.

System.out and System.err

Java's System.out and System.err streams are routed to the WorldView
VRML Console. (Select “Show VRML Console” from the right mouse
Help menu.)

Security

For Java in Script nodes, WorldView provides an environment similar to
Netscape or Internet Explorer for running Java code. Script nodes have
the following restrictions, which are similar to Java applets:

m Scripts cannot read, write or delete files.

= Scripts cannot execute programs (i.e. Runtime.exec).

m Scripts cannot create ServerSockets.

m Scripts cannot link to native code (i.e. System.loadLibrary).

m Scripts cannot create ClassLoaders.

m Scripts may bring up AWT top-level windows.

» Scripts may make socket connections only to their host of origin.

Java classes loaded from the CLASSPATH are considered “trusted code” and
can perform operations ordinarily not allowed by the security manager,
such as reading/writing files and making access to any network host.

PLATINUM WorldView for Developers User Guide 3-17 =

® The WorldView Browser

Using the EMBED tag in HTML documents

Using the EMBED tag in HTML documents

You may use the HTML EMBED tag to specify user interface settings that
will be used in WorldView when a VRML world is embedded in an HTML
document. The following tags are supported:

Tag Setting Effect
VRML_POPMENU, TRUE Enables the right mouse
SGI_POPMENU menu

FALSE Disables the right mouse

menu

VRML_IMAGEQUALITY, BEST Sets image display to
SGI_IMAGEQUALITY “Smooth Shading”

SMOOTH Sets image to “Flat Shading”

SMOOTHEST Sets image to “Wire Frame”

VRML_SPLASHSCREEN, TRUE Displays splash screen at
SGI_SPLASHSCREEN startup
FALSE Prevents splash screen from

appearing at startup

VRML_DASHBOARD, TRUE Turns on horizontal and
SGI_DASHBOARD vertical toolbars

FALSE Turns off both toolbars
VRML_FULLCOLOR TRUE Turns on Full Color mode

FALSE Turns off Full Color mode
VRML_DITHERING TRUE Turns on dithering

FALSE Turns off dithering

m 3-18 PLATINUM WorldView for Developers User Guide

The WorldView Browser =

WorldView EXTERNPROTO Extensions

WorldView EXTERNPROTO Extensions

WorldView implements four new nodes using the standard
EXTERNPROTO extension mechanism described in the VRML 2.0
specification: BillboardText, BrowserSettings, PopupText, and
StreamingAudioClip.

BillboardText

BillboardText f{
exposedField MFString string []
exposedField SFNode fontStyle NULL
exposedField MFFloat length [1 # [0,inf)
exposedField SFFloat maxExtent 0.0 # [0,inf)
} URN: "urn:inet:platinum.com:BillboardText"

The BillboardText node is a WorldView extension to VRML 2.0, which
facilitates the display of efficient, high-quality text in the VRML scene.
The text is billboarded so that it always faces the user. Unlike PopupText,
text in a BillboardText node is scaled by the distance from the camera.

Example:

fFVRML V2.0 utf8
EXTERNPROTO BillboardText [
exposedField MFString string
exposedField SFNode fontStyle
exposedField MFFloat Tength
exposedField SFFloat maxExtent
J "urn:inet:platinum.com:BillboardText"
Shape {
appearance Appearance {
material Material {
diffuseColor 1 0 0
}
}
geometry BillboardText f{
string "Hello, world!"

}

PLATINUM WorldView for Developers User Guide 3-19 =

® The WorldView Browser

WorldView EXTERNPROTO Extensions

BrowserSettings

BrowserSettings {
exposedField SFString quality "DEFAULT"
exposedField SFString qualityWhenMoving "DEFAULT"
exposedField SFString showNavigationBar "DEFAULT"
exposedField SFString fullColor "DEFAULT"
exposedField SFString dithering "DEFAULT"
exposedField SFString rotateObjectsAutomatically "DEFAULT"
exposedField SFString highQualityText "DEFAULT"
exposedField SFString preventCollisions "DEFAULT"
exposedField SFString popupMenu "DEFAULT"

}

The BrowserSettings node uses the standard EXTERNPROTO extension
mechanism described in the VRML 2.0 specification, with the URN
urn:inet:platinum.com:BrowserSettings.

The BrowserSettings node enables VRML authors to control WorldView's
preference settings from within a VRML file. Each field in the
BrowserSettings node controls a different WorldView preference. The
initial value of every field is DEFAULT, which loads the user's default
setting for the selected preference.

exposedField SFString quality "DEFAULT"
exposedField SFString qualityWhenMoving "DEFAULT"

Using this extension to control the preference settings simply defines the
initial setting for each item. The user retains the ability to reset the
preference through the Options... item in the right mouse menu.

m 3-20 PLATINUM WorldView for Developers User Guide

The WorldView Browser =

WorldView EXTERNPROTO Extensions

quality: Sets the graphical quality to display the scene. The accepted
values and the corresponding options on the right mouse button menu
are:

“BEST” = Smooth Shading
“GO0D” = Flat Shading
“POOR” = Wire Frame
This setting can also be controlled with the VRML_IMAGEQUALITY EMBED tag.

qualityWhenMoving: Sets the graphical quality to display the scene when
the user is navigating. The accepted values and the corresponding options
on the “When Moving” submenu of the right mouse menu are:

“BEST” = Smooth Shading
“GO0D” = Flat Shading
“POOR” = Wire Frame
“NONE” = No Change

showNavigationBar: Shows or hides the navigation bar. Accepted values
are DEFAULT, TRUE, and FALSE. This is equivalent to the “Show Navigation
Bar” option on the right mouse menu. This setting can also be controlled
with the VRML_DASHBOARD EMBED tag.

fullColor: Enables or disables Full Color mode. Accepted values are
DEFAULT, TRUE, and FALSE. This is equivalent to the “Full Color” option
on the right mouse menu. This setting can also be controlled with the
VRML_FULLCOLOR EMBED tag.

dithering: Enables or disables dithering. Accepted values are DEFAULT,
TRUE and FALSE. This is equivalent to the “Dithering” option on the right
mouse menu. This setting can also be controlled with the VRML_DITHERING
EMBED tag.

PLATINUM WorldView for Developers User Guide 3-21 =

® The WorldView Browser

WorldView EXTERNPROTO Extensions

rotateObjectsAutomatically: Enables or disables automatic rotation of
objects. Accepted values are DEFAULT, TRUE, and FALSE. This is equivalent
to the “Rotate Objects Automatically” option in the WorldView Options
dialog box.

highQualityText: Enables or disables high quality text. Accepted values
are DEFAULT, TRUE, and FALSE. This is equivalent to the “High Quality
Text” option on the right mouse menu.

preventCollisions: Enables or disables collision detection. Accepted
values are DEFAULT, TRUE, and FALSE. This is equivalent to the “Prevent
Collisions” option on the right mouse menu.

popupMenu: Enables or disables the right mouse menu. Accepted values
are DEFAULT, TRUE, and FALSE. This setting can also be controlled with the
VRML_POPMENU EMBED tag.

Settings defined in the BrowserSettings node will be the world's default
settings, but may be altered by the user through the right mouse menu.

BrowserSettings is a WorldView extension to VRML. To use it, you must
declare it as an EXTERNPROTO, as shown below:

EXTERNPROTO BrowserSettings [
exposedField SFString quality
exposedField SFString qualityWhenMoving
exposedField SFString showNavigationBar
exposedField SFString fullColor
exposedField SFString dithering
exposedField SFString rotateObjectsAutomatically
exposedField SFString highQualityText
exposedField SFString preventCollisions
exposedField SFString popupMenu

J "urn:inet:platinum.com:BrowserSettings”

m 3-22 PLATINUM WorldView for Developers User Guide

The WorldView Browser

PopupText

PopupText {

}

exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField

WorldView EXTERNPROTO Extensions

SFVec3f position 0 0 0
MFString string []

SFColor textColor 1 11
SFColor backgroundColor 0 0 O
SFColor borderColor 1 11
SFInt32 borderWidth 1
SFString family ["SERIF"]
SFString style "PLAIN"
SFString anchor "CENTER"
SFString justify "LEFT"
SFInt32 pointSize 12

SFBool transparent FALSE
SFString language ""

SFString positionType "LOCAL"

The PopupText node uses the standard EXTERNPROTO extension
mechanism described in the VRML 2.0 specification, with the URN
urn:inet:platinum.com:PopupText.

The PopupText node is a WorldView extension to VRML 2.0, which
provides a way to overlay 2D text over the VRML scene. Possible

applications include labels for charts, popup “tool tips” over objects, and

score indicators.

positionType: Determines the position of the popup text. This field is
interpreted according to the value of the positionType field. Possible
values for the positionType field are LOCAL, VIEWPORT and SCREEN.

e positionType LOCAL sets the position of the popup text in the local
coordinate system. This position is transformed into screen

coordinates to place the text in the rendering window.

e positionType VIEWPORT sets the position of the popup text in the
viewport. The X and Y values of the position field may range from
0 to 1, and the Z value is ignored. For X, 0 is the left side of the
viewport and 1 is the right side. For Y, 0 is the bottom of the

viewport and 1 is the top.

PLATINUM WorldView for Developers User Guide

3-23 =

® The WorldView Browser

WorldView EXTERNPROTO Extensions

m 3-24

e positionType SCREEN sets the position of the popup text in screen
coordinates. The X and Y values of the position field are specified
in pixels, with 0 being the left side of the viewport for X and the top
of the viewport for Y.

In all cases, the text is clipped to the rendering window, and is not
obscured by the objects of the VRML scene.

The string field may contain multiple text strings specified using the
UTF-8 encoding as specified by ISO 10646-1:1993. Each text string is
displayed as a line of text.

textColor: Specifies the color of the text.

transparent: Specifies whether the text has a colored background
rectangle behind it. If transparent is FALSE, the backgroundColor field
specifies the background color of the rectangle.

borderWidth: Specifies the thickness of the border around the text. If
borderWidth is 0, no border is displayed. The border is displayed in the
color specified by the borderColor field.

Font attributes are defined with the family, style and pointSize fields. The
family and style fields are interpreted in the same way as the fields with
the same names in the FontStyle node. The pointSize field specifies the
point size used to display the text.

justify: Determines the horizontal alignment of the text. Possible
values are LEFT (default), CENTERand RIGHT. LEFT aligns the beginning of
each string of text with the left side of the text rectangle. RIGHT aligns the
end of each string with the right side of the text rectangle. CENTER centers
each line of text in the text rectangle.

anchor: specifies which corner or side of the text rectangle is coincident
with the 3D point specified by the position field. Valid values are CENTER,
N, S, E, W, NW, SW, NE, and SE.

language: specifies the context of the language for the text string. This
field is interpreted in the same way as the language field of the FontStyle
node.

PLATINUM WorldView for Developers User Guide

The WorldView Browser

WorldView EXTERNPROTO Extensions

The following example is a frame-rate indicator which appears in the
bottom right-hand corner of the viewing window.

fFVRML V2.0 utf8

EXTERNPROTO PopupText [
exposedField SFVec3f position
exposedField MFString string
exposedField SFColor textColor
exposedField SFColor backgroundColor
exposedField SFColor borderColor
exposedField SFInt32 borderWidth
exposedField MFString family
exposedField SFString style
exposedField SFString anchor
exposedField SFString justify
exposedField SFInt32 pointSize
exposedField SFBool transparent
exposedField SFString language
exposedField SFString positionType
J "urn:inet:platinum.com:PopupText"

DEF TEXT PopupText {
family "TYPEWRITER"
style "PLAIN"
pointSize 12
borderWidth 1
textColor 1 11
borderColor 0 0 0
anchor "SE"
positionType "VIEWPORT"
position 1 0 0
backgroundColor 0 0 O

}

DEF TIMER TimeSensor {
loop TRUE

}

PLATINUM WorldView for Developers User Guide 3-25

® The WorldView Browser

WorldView EXTERNPROTO Extensions

DEF SCRIPT Script {

}

eventIn SFTime go

eventOut MFString frameRate

url "javascript: function go() {
frameRate[0] =
browser.getCurrentFrameRate();

P

ROUTE TIMER.time TO SCRIPT.go
ROUTE SCRIPT.frameRate TO TEXT.set_string

StreamingAudioClip

m 3-26

}

StreamingAudioClip f

eventIn MFInt32 set_data
exposedField SFString description
exposedField SFFloat pitch 1.0
exposedField SFTime startTime O
exposedField SFTime stopTime 0
eventOut SFBool isActive

eventOut SFBool isReady

The StreamingAudioClip node uses the standard EXTERNPROTO
extension mechanism described in the VRML 2.0 specification, with the
URN urn:inet:platinum.com:StreamingAudioClip.

A StreamingAudioClip node is similar to the AudioClip node, and can be
instantiated anywhere in the scene graph where an AudioClip node is
expected.

StreamingAudioClip replaces AudioClip's url field with a set_data
eventln, which allows dynamic feeding of audio data.

The isReady eventOut indicates when the node is ready to accept data. Its
value is TRUE when the node has internal buffer space, and FALSE when
the node is flooded.

PLATINUM WorldView for Developers User Guide

The WorldView Browser =
WorldView EXTERNPROTO Extensions

The audio data is packed into an MFInt32 event. The first element of
set_data (set_data[0]) contains the sequence number of the data chunk.
The second element (set_data[1]) specifies the size of audio data in bytes.
The size does not include the first two elements. Subsequent elements
contain actual audio data.

A chunk with sequence number 0 contains a header specifying the format
of the data to follow. A chunk with sequence number -1 indicates end of
stream.

Audio data is packed into MFInt32 using little endian conventions,
placing the least significant byte first.

StreamingAudioClip is a WorldView extension to VRML. To use it, you
must declare it as an EXTERNPROTO, as shown below:

EXTERNPROTO StreamingAudioClip [
eventIn MFInt32 set_data
exposedField SFString description
exposedField SFFloat pitch
exposedField SFTime startTime
exposedField SFTime stopTime
eventOut SFBool isActive
eventOut SFBool isReady
J "urn:inet:platinum.com:StreamingAudioClip"”

PLATINUM WorldView for Developers User Guide 3-27 =

® The WorldView Browser

DirectX Files

DirectX Files

m 3-28

Microsoft defines a file format to be used in conjunction with Direct3D.
These files have a .X extension, and can contain both geometry and
animations. With WorldView, X files may be loaded as main worlds, or
as Inlines. To be loaded as main worlds, the user must associate the .X
extension with WorldView (standard Windows procedure). Then,
double-clicking an DirectX file will launchWorldView and open the file.

DirectX files can also be specified as values of the url fields of Inline
nodes.

JVRML V2.0 utf8
Inline {

url "egg.x"
}

PLATINUM WorldView for Developers User Guide

= 4

WorldView for Developers
Containers

This chapter describes issues and procedures specific to each of
WorldView for Developers’ containers.

111 T 11 o T) T 4-3
Macromedia Director Xtrascccoeiiiiiiiiiiiiiiiiiiieieneieneeennes 4-3
Microsoft Visual CH+ ..o voveieniieiiieiiiiieieneieeieneiceeesencncecenes 4-4
Adding the Componentt 4-4
Using the Componentina Window, 4-5
Controlling the Component, 4-5
Adding the Component to a Dialog Box, 4-6
Embedding in C++ atRuntime 4-6

PLATINUM WorldView for Developers User Guide 4-1 =

m WorldView for Developers Containers

m 4-2

Microsoft Java VMcouiiiiiiiiiiiiiiiiiiiiiiiiiiteieniennenneanenens 4-7
Embedding the WorldView Component 4-8
Accessing the COM APL 4-9
Using Standard Java EAl 4-10
Microsoft Java and ActiveX Integration 4-10
Embedding in J++atRuntime....... i 4-11
SAMPIS .o 4-11
Microsoft Visual Basicccociiviiiiiiiiiiiiiiiiiiiiiiiiiiiniiinnnn, 4-12
Adding the Componentt 4-12
Positioning and Resizing the Control in a Visual BasicForm 4-13
Getting a Referencetothe Control 4-13
Getting a Reference to the VrmIBrowser Object 4-14
Adding a VRML Primitive tothe Scene 4-14
Removing a Node fromtheScene 4-16
Changing the Fields of a Nodeina VRMLScene 4-17
Receiving Events froma VRML Scene, 4-18
Passing Arrays to Methods i 4-19
Invoking an OCX from the Scriptnode 4-20
Embedding in Visual Basicat Runtime 4-21
SAMIPIES . 4-21
Working with Web Pages: HTMLand Javaccccveveiinienenennns 4-22
Getting a Referencetothe Control 4-22
Embedding a WorldView for Developers File in an HTML Page 4-23
Getting a Reference to the VrmIBrowser Object 4-24
Adding a VRML PrimitivetotheScene 4-26
Removing a Node fromtheScene 4-27
Changing the Fields of a Nodeina VRMLScene 4-28
Receiving Events fromthe VRML Scene 4-29

PLATINUM WorldView for Developers User Guide

WorldView for Developers Containers =®

Introduction

Introduction

This chapter describes issues and procedures specific to using WorldView
for Developers in each of its applicable containers. WorldView for
Developers is compatible with:

Macromedia Director Xtras
Microsoft Visual C++
Microsoft Java VM
Microsoft Visual Basic

Web Pages: HTML and Java

Macromedia Director Xtras

Macromedia Control Xtra for ActiveX must be installed.

To place a WorldView control in your cast window:

1

Select Insert » Control » ActiveX... to invoke a dialog containing a list
of all available ActiveX controls.

Select WorldView Control and click the OK button to invoke the
ActiveX Control Properties - WorldView Control dialog.

Use this dialog to set control properties such as the VRML file to be
displayed (the “World” property), the navigation mode, and the
graphics display mode. Click OK to apply the selected properties, and
exit the dialog.

The WorldView control now appears in your cast window. Drag it from
the cast window onto the stage in order to place a running WorldView
object into your presentation.

Refer to the Director manual and the tutorial for the ActiveX Xtra for
more details on manipulating the control after it has been placed into a
presentation.

PLATINUM WorldView for Developers User Guide 4-3 =

m WorldView for Developers Containers
Microsoft Visual C++

Microsoft Visual C++

Visual C++ 5.0 provides extensive support for ActiveX Controls, making
it extremely straightforward to embed WorldView for Developers in your
C++ application.

Adding the Component
To add WorldView for Developers to your C++ project:

1 From the Project menu, select the Add To Project » Components and
Controls item. The Components and Controls dialog box will appear.

2 Select the folder “Registered ActiveX Controls.”

3 Double-click on the WorldView Control icon. When Visual C++
prompts you with the list of interfaces to include, press the OK button.

WorldView for Developers is now included in your project. Visual C++
will add two files, worldview.h and worldview.cpp, to your project, as
well as other files that wrap WorldView for Developers COM objects.

m 4-4 PLATINUM WorldView for Developers User Guide

WorldView for Developers Containers =®

Microsoft Visual C++

Using the Component in a Window

WorldView for Developers can now be created as a child window of one
of your application’s windows.

1

First, include the file worldview.h in the header file for the window
you want to add WorldView to:

ftinclude “worldview.h”
Declare a member variable for WorldView in your window class:
CWorldView* m_worldview;

Now add a call to CWorldView::Create to the initialization code for
your window, e.g. the OnCreate method. For instance:

// Get the rectangle for the client area of the window:
// WorldView will occupy the entire client area.

RECT rect;

GetClientRect(&rect);

// Create WorldView

BOOL bResult = m_worldview->Create(
NULL,
“WorldView”,
WS_CHILD|WS_VISIBLE,
rect,
this,
0

)3

See also Embedding WorldView in a C++ Application: Tiny3D.

Controlling the Component

Once you have created an instance of WorldView for Developers, you can
call methods and modify properties of the control. For example, to load
the VRML file cone.wrl, set the World property of the control:

m_worldview->SetWorld(“cone.wrl”);

PLATINUM WorldView for Developers User Guide 4-5 m

m WorldView for Developers Containers
Microsoft Visual C++

Adding the Component to a Dialog Box

It is also possible to embed WorldView for Developers in a dialog box.
After you have added the WorldView for Developers component to your
C++ project, the WorldView icon will appear in the dialog box editor.
Select it, and you can create a WorldView dialog box item just as you
would create any other type of dialog box control.

By clicking the right-mouse button on the WorldView dialog, you can
alter properties of the WorldView control, such as the World property.

To control the WorldView dialog box item from C++ code, add a member
variable for it to your dialog box class. This will enable you to modify
properties and call methods of the WorldView control.

1 From the ClassWizard, select your dialog box class and select the
Member Variables property sheet.

2 Click on the ID of the WorldView dialog box item (e.g.
IDC_WORLDVIEW1) and click the “Add Variable...” button.

Embedding in C++ at Runtime

In C++, the MFC framework permits you to specify a runtime license key
when creating an instance of an ActiveX Control. First, paste the runtime
license key into your application’s source code:

jidefine RUNTIME_LICENSE_KEY L”<1icense key pasted from clipboard>”

To create the WorldView for Developers control, specify the license key
as an argument to the Create method as follows:

BOOL bResult = m_pWorldView->Create(
NULL,
“WorldView”,
WS_CHILD|WS_VISIBLE,
rect,
this,
0,

RUNTIME_LICENSE_KEY

)

m 4-6 PLATINUM WorldView for Developers User Guide

WorldView for Developers Containers =®
Microsoft Java VM

Microsoft Java VM

The Microsoft Java VM shipped with Microsoft Internet Explorer 4.0 and
distributed with Microsoft Java SDK 2.0 has the ability to host an ActiveX
Control. This means that a Java application or applet can act as an
ActiveX Container and embed WorldView for Developers.

Using Microsoft’s Java-ActiveX integration, embedding WorldView for
Developers can be accomplished with only a few lines of code. As the
following examples demonstrate, the WorldView for Developers ActiveX
Control can be added to a Java AWT panel or window just like any other
AWT component.

PLATINUM WorldView for Developers User Guide 4-7 m

m WorldView for Developers Containers

Microsoft Java VM

Embedding the WorldView Component

m 4-8

The following example is a standalone Java application that embeds
WorldView:

import java.awt.*;
import com.ms.activeX.*;

public class JWorldViewContainer
extends Frame implements ActiveXControllListener
{
public static void main(String argv[])
{
new JWorldViewContainer();

}

pubTic JWorldViewContainer()
{
super(“JWorldViewContainer”);

// Create the WorldView for Developers ActiveX Control by CLSID.
ActiveXControl ¢ =

new ActiveXControl(“{0939A9F5-1788-11d2-8FDE-0060975B8649}”);

// Notify us when the control is loaded
c.addActiveXControllListener(this);

// Load a WRL file
c.setProperty (“World”, “c:\\wrl\\mytest.wrl”);

// Add the WorldView ActiveX Control to this
// AWT frame window
add(“Center”, c¢);
setSize(400, 400);
show();

}

public void controlCreated(Object target)
{

// called when the ActiveX Control is done loading
}

PLATINUM WorldView for Developers User Guide

WorldView for Developers Containers =®
Microsoft Java VM

Accessing the COM API

The previous example embeds WorldView for Developers inside a Java
application and allows it to display a VRML file. To control the VRML
scene from within the Java application, you must access the WorldView
for Developers COM API. To do this, you will need to obtain the
IVrmlBrowser interface.

1 First, add the following import lines to the previous example:

import intervista.javacom.worldview.IWorldView;
import intervista.javacom.vrmlbrowser.IVrmlBrowser;
import vrml.external.*;

2 Then add these lines to the controlCreated method:

IWorldView worldview = (IWorldView) c.getObject();
IVrmIBrowser browser = worldview.GetBrowser();

The controlCreated method is invoked when the ActiveX Control is done
loading. Because the GetBrowser method cannot be invoked until
WorldView for Developers is completely loaded, this initialization code
is placed in the controlCreated method.

Just as obtaining the vrml.external.Browser object is the first step in a Java
EAI program, obtaining the IVrmIBrowser interface is the first step in a
program that uses the WorldView for Developers COM API. Using the
IVrmIBrowser interface, you can acquire references to nodes in the VRML
scene and control their behavior.

PLATINUM WorldView for Developers User Guide 4-9 m

m WorldView for Developers Containers

Microsoft Java VM

Using Standard Java EAI

To use the standard Java EAI in a Java program that embeds WorldView
for Developers, call the SetControl method of the class

vrml.external. WorldViewControl, and pass it the IWorldView interface of
the ActiveX Control.

The following example demonstrates how to obtain a standard Java EAI
Browser object from the IVrmIBrowser interface.

// Acquire the IVrmlBrowser interface
IWorldView worldview = (IWorldView) c.getObject();
IVrmIBrowser browser = worldview.GetBrowser();

// Obtain the Java EAI Browser object

Applet dummyApplet = new Applet();
WorldViewControl.SetControl(c.getObject(), dummyApplet);
browser = Browser.getBrowser(dummyApplet);

Microsoft Java and ActiveX Integration

Embedding WorldView for Developers in a Java program is made
possible by Microsoft’s integration of Java and ActiveX. For more
information about Microsoft’s Java/ActiveX integration, consult the
documentation for the Microsoft Java SDK 2.0. The Microsoft Java SDK
2.0 may be downloaded from http://www.microsoft.com/java/sdk.

m 4-10 PLATINUM WorldView for Developers User Guide

WorldView for Developers Containers =®

Microsoft Java VM

Embedding in J++ at Runtime

» InJ++, paste the runtime license key into your application’s source
code:

private static final String RUNTIME_LICENSE_KEY = “<license key>”;

private static final String WORLDVIEW_CLSID = “{0939A9F5-1788-11d2-
8FDE-0060975B86491”;

» To create the WorldView for Developers control, you will need to use
the class com.ms.com.LicenseMgr which enables you to create COM
objects using a license key.

import com.ms.com.*;

ILicenseMgr licenseMgr = (ILicenseMgr) new LicenseMgr();
Object control = TicenseMgr.createWithlic(
RUNTIME_LICENSE_KEY,
WORLDVIEW_CLSID,
nult,
ComContext.INPROC_SERVER
)

The createWithLic method returns a raw Java/COM object. You may wish
to convert this to an instance of com.ms.com.ActiveXControl which can
be treated as an AWT component and easily added to a window of your
Java application.

ActiveXControl = new ActiveXControl ((IUnknown)control);

Samples
A more complex version of the JWorldViewContainer sample above is

provided in Appendix A. See Embedding WorldView in a Java Application:
JWorldViewContainer.

PLATINUM WorldView for Developers User Guide 4-11 m

m WorldView for Developers Containers

Microsoft Visual Basic

Microsoft Visual Basic

Adding the Component
Install WorldView for Developers, and launch Visual Basic.
1 From the Visual Basic menu, select Project » Components.
2 Select WorldView for Developers.

3 Press OK. The WorldView for Developers icon will appear in the
Visual Basic Tool Palette.

4 Click on the WorldView for Developers icon and draw a rectangle with
your mouse to place and give the control its initial size, or double click
on the icon to place a default sized and positioned WorldView for
Developers control on the form.

Once the control has been placed, it will behave as any Visual Basic
component: its properties will appear on the Property Bar; double
clicking it will invoke the component’s code space; pressing F4 while the
component has the focus will give you a popup property page, etc.

To set the control’s properties manually, enter values in the property
page. To set them programmatically, use the syntax described in this
document.

It is possible to place multiple WorldView for Developers controls in the
same form. They can be control arrays or not. Note that this may increase
the hardware requirements for your application.

m 4-12 PLATINUM WorldView for Developers User Guide

WorldView for Developers Containers =®

Microsoft Visual Basic

Positioning and Resizing the Control in a Visual Basic Form
1 Click on the control on the form.

2 Drag the control around to move it. The control may also be moved
by entering its desired position in pixels using the Top and Left
properties of the control.

3 Place your mouse over the borders, indicated by squares on the sides
of the control, and drag to resize the control as desired. Selecting and
dragging a corner will resize the control’s width and height
simultaneously. The size may also be entered in pixels using the
Height and Width properties of the control.

Getting a Reference to the Control

By default, the control you place on your form will be named
WorldViewl1. This can be changed to any desired name using Visual
Basic’s property page. The examples below assume the default name.

Referring to a control’s properties always follows this syntax:

assignment:
control.property = property value

reference:
some variable = control.property

where control is the name of the WorldView for Developers control (in
this case, WorldView1) and property is any of the valid properties of the
control such as World, DashboardEnabled, or FullColor.

» To display the URL of the current VRML file loaded into the control in
a popup message box:

MsgBox WorldViewl.World

» To set the URL of the VRML file programmatically:
WorldViewl.World = “C:\MyWorld.wrl”

PLATINUM WorldView for Developers User Guide 4-13 =

m WorldView for Developers Containers

Microsoft Visual Basic

Getting a Reference to the VrmiBrowser Object

To be able to fully manipulate the VRML scene you must have a reference
to the VrmlBrowser.

» Declare variables for the WorldView Control and Browser Objects
(this is an example of early (Visual Basic compile time) binding):

Dim browser As VrmlBrowser
Dim factory as IVrmlObjectFactory

Set browser = WorldViewl.GetBrowser
Set factory = browser

Note * You must declare an IVrmlObjectFactory because Visual Basic
supports only one interface to an Object, and it will not cast one
object to another type, as in Java or C++. IVrmlObjectFactory must be
implemented to create new VRML data types such as ConstMFNode,
SFString, etc.

Now you can get or set information about the browser, create VRML data
types, and add nodes to the scene.
» To show the current frame rate:

Labell.Caption = “Current frame rate is “ +
browser.GetCurrentFrameRate

Adding a VRML Primitive to the Scene

m 4-14

Once you have a reference to the browser, use the External Authoring
Interface for VRML that communicates with the scene via COM to add a
VRML primitive to the scene.

There are several ways to add nodes to the scene, the simplest is to use
CreateVrmlFromString. You can use the World property to load a
preexisting VRML file.

PLATINUM WorldView for Developers User Guide

WorldView for Developers Containers =®

Microsoft Visual Basic

» To add a blue cone to the scene (after declaring variables for the

browser):

‘ declare VRML variables
Dim vrmlString as String

Dim addChildren as VrmIMFNode
Dim geom as VrmlConstMFNode

Dim root as VrmlNode

Dim coneNode as VrmlBaseNode

Dim mfnode as VrmIMFNode

‘ load a blank world containing only a Transform DEF’d Root
* (refer to VRML Spec for more details on this command)

WorldViewl.World = “c:\blankworld.wrl”

‘ Get a reference to the transform node in the loaded world

‘ Get a reference to the addChildren eventIn of the transform node
browser.GetNode(*“Root”, root)
Set addChildren root.GetEventIn(*“addChildren”)

‘ Create a VRML string for the cone

vrmlString = “Transform
vrmlString = vrmlString
vrmlString = vrmlString
vrmlString = vrmlString
vrmlString = vrmlString
vrmlString = vrmlString

.

{ translation 5 0 O children [*

“ DEF touch TouchSensor{}”

“ Shape { appearance Appearance “

‘ { material DEF mat Material
o

+
+
+
+

+

“ diffuseColor 0 0 1 }

“ geometry Cone {} 1} °

Add the cone to the Root Transform in the scene

browser.CreateVrmlFromString(vrmlString, geom)
factory.CreateVrmIMFNode(mfnode)

‘ Get the first node (in this case, the Cone) and add it to the

‘ array of nodes which addChildren wants as a parameter

geom.GetlValue 0, coneNode
mfnode.AddValue geom.GetlValue(0)
addChildren.SetValueFromMFNode mfnode

If blankworld.wrl looked like this:

FFVRML V2.0 utf8

DEF Root Transform { children [] }

[«

A blue cone should appear in the scene 5 meters (VRML world meters) to

the right of center.

PLATINUM WorldView for Developers User Guide

4-15 =m

m WorldView for Developers Containers

Microsoft Visual Basic

Removing a Node from the Scene

» Follow the same process as adding to a scene but declare another
eventIln MFNode for removeChildren:

Dim removeChildren as VrmlIMFNode

root.GetEventIn(“removeChildren”, removeChildren)
removeChildren.SetValue mfnode

Be certain that the values in MFNode are references to the nodes you want
removed.

m 4-16 PLATINUM WorldView for Developers User Guide

WorldView for Developers Containers =®

Microsoft Visual Basic

Changing the Fields of a Node in a VRML Scene

» Generate a button on your VB form called rotateButton, which will
rotate the cone clockwise along its X axis, and alternate its color from
blue to red when selected by the user. (This example builds on the
previous.)

° Get reference to the rotation exposedfField and the

Dim
Dim
Dim
Dim
Dim

coneRotation As VrmlSFRotation
coneColor As VrmISFColor
coneMaterial As VrmlNode

angle As Single

red As Single

angle = 0

browser.GetNode(“mat”, coneMaterial)
set coneRotation=root.GetExposedField(“rotation™)
set coneColor=mat.GetExposedField(“diffuseColor”)

Sub

End

rotateButton_Click()

If angle >= 3.14 Then
angle =0
End If

angle = angle + .785
coneRotation.SetValue(1l, 0, 0, angle)
red=coneColor.GetRed

If red =1 Then
coneColor.SetValue 0, 0, 1
Else
coneColor.SetValue 1, 0, 0
End If

Sub

PLATINUM WorldView for Developers User Guide

4-17 =

m WorldView for Developers Containers

Microsoft Visual Basic

Receiving Events from a VRML Scene

Make sure references to IVrmlEvent, IVrmlField, IVrmlConstField are set
via the Project » Reference menu in Visual Basic.

You must set up a call back in Visual Basic so that your program can be
notified when an eventOut occurs from the VRML scene. The best way to
do that is to create an [IVrmlEventOutObserver class in Visual Basic.

To receive information when a user clicks on the cube

1 Create a new class and call it ConeEventObserver.
2 In the declaration section implement IVrmlEventOutObserver:
Implements IVrmlEventOutObserver

3 Then, implement the Callback method. Because it is an abstract class,
you must implement all the methods declared as members of
IVrmlEventOutObserver. The Callback method is called when the
WorldView control generates an eventOut that the
IVrmlEventOutObserver is observing.

This example method generates a popup message box saying “eventOut
caught” whenever the user clicks the cone:

Private Sub VrmlEventOutObserver_Callback(ByVal value As
IVrmlConstField, ByVal timeStamp As Double, userData As Variant)
MsgBox “eventOut caught with tag = ” + format(userData)
End Sub

m 4-18 PLATINUM WorldView for Developers User Guide

WorldView for Developers Containers =®

Microsoft Visual Basic

» In the declaration section of your form enter:

Dim tag As Integer

Dim conekEvents As ConeEventObserver
Dim coneTouch As VrmINode

Dim coneTouchTime As VrmlConstSFTime

‘Create an instance of ConekEventObserver
Set conekvents = New ConekEventObserver

‘Get a reference to the cone’s touchSensor
Set coneTouch = browser.GetNode(“touch”)

set coneTouchTime=coneTouch.GetEventOut(“touchTime™)
tag =1
coneTouch.Advise(coneEvents, tag)

When the user clicks on the cone, you should see a Visual Basic popup
message box saying “eventOut caught with tag = 1.”

Passing Arrays to Methods

When a method requires an array as a parameter, you must pass the first
element of the array. You must also specify the number of elements in the
array being passed.

For example:

Dim SingleArray (0 to 5) As Single
Dim AnMFVec3f As VrmIMFVec3f

For i=0to 5
SingleArray(i) =i
Next i

AnMFVec3f.SetValue 6, SingleArray(0)

PLATINUM WorldView for Developers User Guide 4-19 =

m WorldView for Developers Containers

Microsoft Visual Basic

Invoking an OCX from the Script node

The Script node is a powerful tool for programming behavior in a scene.
However, the VRML 2.0 specification describes only the use of Java and
JavaScript as scripting languages. As a result, the majority of VRML
browsers support only these languages in the Script node. To enable you
to write scripted behaviors in other programming languages, WorldView
for Developers provides the ability to invoke an OCX from the Script
node. Using this feature, you can write an OCX in any COM-capable
language to control the VRML scene.

We strongly suggest that to create scripts written in Java, you use the
VRML 2.0 Java in Script node interface, rather than the COM interface.

Supported protocol in the Script node’s url field

An OCX is invoked from a Script node by using the clsid: protocol. Using
the clsid: protocol, specify the GUID of your script OCX as follows:

Script {
url “clsid:62107a01-febf-11d0-bbc0-444553540000”
}

The OCX must be registered on the user’s computer before WorldView
loads the VRML file. WorldView can not yet automatically download an
OCX from the Internet and verify it using Microsoft Authenticode.
Therefore, the OCX must be present on the user’s system before the
VRML file is loaded.

The clsid: protocol is a WorldView extension to the Script node, and is
not currently supported by other VRML browsers. To ensure that your
VRML file runs in other browsers, you must provide a “fallback” script
which is executed if OCX functionality is not available. This example falls
back on JavaScript:

Script {
url [“clsid:62107a01-febf-11d0-bbc0-444553540000”
“Jjavascript:
function initialize() { print(‘Could not load OCX’); }” 1

m 4-20 PLATINUM WorldView for Developers User Guide

WorldView for Developers Containers =®

Microsoft Visual Basic

The COM object implementing the script must support the
IVrmlScriptimplementation interface or expose the methods of the
interface through OLE Automation.

For a complete description of the IVrmlScriptimplementation Interface,
see Chapter 9, VrmlScriptImplementation Interface.

For a complete description of the IVrmlScriptNode Interface, see
Chapter 9, VrmlBaseNode Objects.

For a complete description of the IVrmlEvent Interface, see Chapter 9,
VrmlEvent Object.

Embedding in Visual Basic at Runtime

Samples

In Visual Basic, it is NOT necessary to explicitly acquire the runtime
license key as in C++ and J++. Visual Basic will automatically embed the
WorldView for Developers runtime license key in your .exe when you
compile your Visual Basic program.

For an example of an OCX that implements scripted behaviors in a VRML
scene, see Invoking an OCX from a Script node: OCXDemo.

PLATINUM WorldView for Developers User Guide 4-21 m

m WorldView for Developers Containers
Working with Web Pages: HTML and Java

Working with Web Pages: HTML and Java

Getting a Reference to the Control

To set up a reference to the browser from an HTML page, embed a
VBScript script, such as the sample script shown below, in the HTML page
that will call a function in your Java class, then pass the WorldView
control in the <OBJECT> tags to the Java class. (See Chapter 3, The
WorldView Browser for more information.)

<script Tanguage="VBScript”>
sub window_onLoad
document.WVforDevTest.SetControl WorldView
end sub
</script>

n 4-22 PLATINUM WorldView for Developers User Guide

WorldView for Developers Containers =

Working with Web Pages: HTML and Java

Embedding a WorldView for Developers File in an HTML Page

<html>
<head>
<titled>WVforDev Test</title>
</head>

<body bgcolor=>

{center>

<h3d>WV forDev &bsp CONTROL &bsp TES T</h3>
<{/center>

<object id="WorldView” CLASSID="clsid:0939A9F5-1788-11d2-8FDE-
0060975B8649" height=250 width=100% align=center MAYSCRIPT>

<param name="World” value="output.wrl”>

</object>

<p>

<applet id="WVforDevTest” code="WVControlTest.class” height=300
width=100%>

</applet>

<script Tanguage="VBScript”>
sub window_onlLoad
document.WVforDevTest.SetControl WorldView
end sub
</script>

</body>
</html>

Once this VBScript has been embedded in your HTML page, references
between the browser and the HTML page can be made.

PLATINUM WorldView for Developers User Guide 4-23 =

m WorldView for Developers Containers
Working with Web Pages: HTML and Java

Getting a Reference to the VrmiBrowser Object

1 Import these java packages:

import axworldview.*;
import vrmlbrowser.*;

2 Declare variables for the control, browser, and factory objects:

IWorTdView WorldViewControl = null;
IVrmlBrowser browser = null;
IVrmlObjectFactory factory = null;

3 Create the SetControl method that the VBScript on the HTML page
will call when the page is loaded:

public void SetControl(Object o) {
WorldViewControl=(IWorldView) o;
}

When the page is loaded, the VBScript described in the previous example
calls this method, then passes a reference to the embedded WorldView
for Developer object on the same HTML page. (The reference is passed by
calling the method in the embedded Java applet.)

Once the reference to the WorldView object is set, it can be used in the
rest of the code as follows (which shows how to get the reference to the
VrmlBrowser object within the control):

m 4-24 PLATINUM WorldView for Developers User Guide

WorldView for Developers Containers

Working with Web Pages: HTML and Java

» To run from the init() method of the applet
public void initVrml() {
boolean testDone, worldDone, browserDone;
testDone=worldDone=browserDone=false;

while(true) {
while (WorldViewControl=null) {)}
if (worldDone=false) worldDone=true;
if (browser==null && !browserDone) {
browser = (IVrmlBrowser)WorldViewControl.GetBrowser();
browserDone=true;

}

if (browser!=null && WorldViewControl !=null && !testDone) {
testDone=true;

}
if (testDone=true) { break; |}

try {
Thread.sleep(200);
}
catch (InterruptedException e) {}
if (testDone=true) break;

}

This gives you access to the browser.

» To display browser info out to the Java console:
String strOut;

strOut = “Browser Info: “ +

“Current World URL is “ + ((IWorldViewDeveloper)
WorldViewControl).getWorld() + “\n” +

“Current Viewpoint is “ + ((IWorldViewDeveloper)
WorldViewControl).getViewPoint() + “\n” +

getNavMode(((IWorldViewDeveloper)
WorldViewControl).getNavigationMode()) + “\n”;

System.out.printin(striut);

PLATINUM WorldView for Developers User Guide 4-25

m WorldView for Developers Containers

Working with Web Pages: HTML and Java

Adding a VRML Primitive to the Scene

Once you have a reference to the browser, a VRML Primitive may be
added to the scene using the External Authoring Interface for VRML that
communicates with the scene via COM.

There are several ways to add nodes to the scene. The simplest is to use
CreateVrmlFromString. You can use the World property to load a
preexisting VRML file.

» To add a blue cone to the scene (after declaring variables for the
browser), add these to the top of your Java program:

import platinum.javacom.vrmlbasenode.*;
import platinum.javacom.vrmlnode.*;
import platinum.javacom.vrmimfnode.*;
import platinum.javacom.vrmlconstmfnode.*;

IVrmINode root;
IVrm1ConstMFNode geom;
IVrmIMFNode addChildren;
IVrmIMFNode mfnode;

String vrmlString;

root=browser.GetNode(*“Root”);
addChildren = (IVrmIMFNode) root.GetEventIn(*“addChildren”);
factory = (IVrmlObjectFactory) browser;

‘ Create a VRML string for the cone
vrmlString = “DEF Transform { translation 5 0 O children [* +

DEF touch TouchSensor{}” +
“ DEF Shape { appearance Appearance *“ +
“ { material DEF mat Material { “ +
“ diffuseColor 0 O 1 } } “ +

“ geometry Cone {} 1} “;

geom = CreateVrmlFromString(vrmlString);
mfnode.Set1Value(0, geom.GetlValue(0));
addChildren.SetValue(mfnode);

m 4-26 PLATINUM WorldView for Developers User Guide

WorldView for Developers Containers =®

Working with Web Pages: HTML and Java

Removing a Node from the Scene

» Use the same technique as adding to a scene, but declare another
eventIln MFNode for removeChildren:

IVrmIMFNode removeChildren;
removeChildren = (IVrmIMFNode) root.GetEventIn(“removeChildren”);
removeChildren.SetValue(mfnode);

Be certain that the values in MFNode are the references to the node(s)
you want to remove.

PLATINUM WorldView for Developers User Guide 4-27 m

m WorldView for Developers Containers

Working with Web Pages: HTML and Java

Changing the Fields of a Node in a VRML Scene

» Generate a button in a Java applet called rotateButton, which will
rotate the cone clockwise along its X axis, and alternate its color from
blue to red when selected by the user: (This example builds on the
previous.)

import vrmlsfcolor.*;
import vrmlsfrotation.*;
import vrmlnode.*;

IVrmI1SFRotation coneRotation;
IVrm1SFColor coneColor;
IVrmINode coneMaterial;

float angle;

angle = 0;

coneMaterial = root.GetNode(“mat”);

coneRotation = root.GetNode(“rotation”);
coneColor = mat.GetExposedField(“diffuseColor”);

public boolean action(Event e, Object what) {
if (e.target==rotateButton) {

if (angle >= 3.14) angle = 0;
angle += .785;
coneRotation.SetValue(1l, 0, 0, angle);

if (coneColor.GetRed() = 1) {
coneColor.SetValue(0, 0, 1);
}
else |
coneColor.SetValue(l, 0, 0);
}

m 4-28 PLATINUM WorldView for Developers User Guide

WorldView for Developers Containers =®

Working with Web Pages: HTML and Java

Receiving Events from the VRML Scene
Your applet must implement the IVrmlEventOutObserver interface.
The example applet below has its own TouchTime EventOutObserver:

1 Import com.ms.com to access COM components (such as Variants).
import com.ms.com.*;
2 These WorldView for Developers packages are also required:

import platinum.javacom.vrmlbrowser.*;

import platinum.javacom.vrmlconstsftime.*;
import platinum.javacom.vrmleventoutobserver.*;
import platinum.javacom.vrmlnode.*;

import platinum.javacom.worldview.*;

import platinum.javacom.vrmlconstfield.*;

import java.applet.*;
import java.awt.*;

public class YourClass extends Applet implements IVrmlEventOutObserver {

private static TextField myTextArea=null;

private IVrmIBrowser myBrowser=null;

private IVrmlConstSFTime myTouchTime=null;

private TouchTimeObserver myTouchTimeObserver=null;
int calledHowManyTimes=1;

3 As in previous examples, this method is called from a script on the
HTML page that passes a reference to the embedded ActiveX control
(WorldView for Developers) so the applet can get a reference to the
VrmlIBrowser object.

public void SetControl(Object control) {
//Get reference to browser
IWorTdView worldViewControl=(IWorldView) control;
myBrowser = worldViewControl.GetBrowser();
initVrml () ;

PLATINUM WorldView for Developers User Guide 4-29 m

m WorldView for Developers Containers

Working with Web Pages: HTML and Java

® 4-30

4 Set the UI to show a scrolling text box so the callback method can

print the number of times the object is touched:

public void init() {
myTextArea = new TextField(30);
myTextArea.setEditable(false);
add(myTextArea);

}

Get references to the touchSensor node in the VRML scene (in this
case, there was a touchSensor DEF'd to). Instance a new observer, and
set the Advise method to notify the callback routine when an event
has occurred.

public void initVrml() f{

//Get reference to touchSensor

IVrmINode touchSensorNode = myBrowser.GetNode("t");
myTouchTime = (IVrmlConstSFTime)

touchSensorNode.GetEventOut("touchTime");
myTouchTimeObserver = new TouchTimeObserver(myTextArea);
myTouchTime.Advise(this, new Variant(null));

}

6 The following must be implemented: the field is the VRML field that

you wish to track events for; ts is the timestamp of the event; and
userData is a Variant.

publicvoidCallback(IVrmlConstField field, doublets, Variant userData)

myTextArea.setText("touched"+String.valueOf(calledHowManyTimes++)

+ " times\n");

}
}

class TouchTimeObserver implements IVrmlEventOutObserver {

private TextField myTextArea=null;
TouchTimeObserver(TextField ta) { myTextArea=ta; }

public void Callback(IVrmlConstField f, double ts, Variant userData) {
myTextArea.setText("callback called with user data " + userData);

}

PLATINUM WorldView for Developers User Guide

WorldView for Developers Containers =®

Working with Web Pages: HTML and Java

» The following sample VRML file describes a sphere that changes
between blue and red each time it is touched.

FFVRML V2.0 utf8

DEF Root Transform {
children [
DEF b Shape {
appearance Appearance {
material DEF mat Material {
diffuseColor 1 0 0 }
}
geometry Sphere { radius 5 }

DEF t TouchSensor {}
DEF s Script {
eventIn SFTime touched
field SFColor currColor 1 0 0
eventOut SFColor newColor
url "javascript:
function touched() f{
if (currColor[0]=1) {
currColor[0]=0; currColor[1]=0; currColor[2]=1;
}
else |
currColor[0]=1; currColor[1]=0; currColor[2]=0;
}
newColor = currColor;
X

]
}
ROUTE t.touchTime TO s.touched
ROUTE s.newColor TO mat.diffuseColor

PLATINUM WorldView for Developers User Guide 4-31 m

m WorldView for Developers Containers

Working with Web Pages: HTML and Java

m 4-32 PLATINUM WorldView for Developers User Guide

= 5

WorldView for Developers
Runtimes

This chapter describes the requirements necessary for runtime
applications generated using WorldView for Developers.

Generating Runtime Applicationsc.cciiiiiiiiiiiiiiiiieiennn. 5-2
Requirements for Runtime Applicationscooiiiii, 5-2
Including your own Helpfilesccoieiiiiiiiiiiiiieiiiiiienenenes 5-5
WorldView License Agreementccoviiiiiiiiiiiieiieiennnennens 5-5
Embedding WorldView for Developers at Runtimee.en 5-6
Embedding in C++atRuntime i 5-6
Embedding in J++atRuntime i, 5-7
Embedding in Visual Basicat Runtime 5-7

PLATINUM WorldView for Developers User Guide 5-1 =

m WorldView for Developers Runtimes

Generating Runtime Applications

Generating Runtime Applications

If you do not wish to generate your own installer, you may also use the
WorldView for Developers 2.1 Runtime installer to install the WorldView
OCX on your users’ machines. This package is in a .zip archive available
free from PLATINUM. (Please contact us at support@intervista.com for
more information.) The installer was created using InstallShield5. Due to
a known bug in InstallShield5, earlier versions of InstallShield, and other
applications, may not be able to call the Setup.exe correctly.

The Runtime installer is a 4MB .zip archive, which includes:

WorldView for Developers 2.1 CAB files,
Setup.exe files (generated by InstallShield),
InstallShield script, and

support file.

Requirements for Runtime Applications

Applications created using WorldView for Developers require the same
components as WorldView:

s DirectX 5,
m DirectShow (if the application contains Movie Textures), and the
m Java VM (if the application contains Java).

These components are not included in the WorldView for Developers
installer, and should be installed by the application itself, if necessary.
These components may be licensed from Microsoft for free. See:

http://www.microsoft.com/directx/resources/dx5mediaruntime.htm,
http://www.microsoft.com/directx/resources/enddl.htm, and
http://www.microsoft.com/java/vm/vmdownload.htm for details.

Your application installer must also install the OCX and DLLs required
by WorldView. All required files, with the exception of 3rd party
installers, may be found on your machine in the directories listed below.

PLATINUM WorldView for Developers User Guide

WorldView for Developers Runtimes =®

Requirements for Runtime Applications

The WorldView OCX requires that the following installers be run to
completion before registration:

= NT Service Pack 3 (for Windows NT)
http://support.microsoft.com/download/support/mslfiles/
NT4SP3_I.LEXE

Requires a reboot before installation is complete.

m DirectX 5 (for Windows 95)
http://www.microsoft.com/directx/resources/enddl.htm

May require a reboot before installation is complete.
= Microsoft VC++ Axdist.exe installer

= Microsoft VM for Java installer
http://www.microsoft.com/java/vm/vmdownload.htm,

The WorldView OCX requires that several shared DLLs exist before
registration. The following files must be installed in the same directory as
the WorldView OCX, and are self-registering DLLs.

MMAR. AX
MMVR. AX

The following files must be installed in the appropriate Windows system
directory:

MSVCRT.DLL
MFC42.DLL

OpenGL32.DLL (for Windows 95)
GLU32.DLL (for Windows 95)

The WorldView OCX requires that the following Java Class archive be
installed in the same directory as the WorldView OCX:

axWorTdView.zip

PLATINUM WorldView for Developers User Guide 5-3 m

m WorldView for Developers Runtimes

Requirements for Runtime Applications

m 5-4

The following registry keys must exist before the WorldView OCX is
registered:

HKEY_CURRENT_USER\Software\PLATINUM technology\WorldView for
Developers 2.1\ActiveX\Main\Hardware Acceleration=1

HKEY_LOCAL_MACHINE\Software\PLATINUM technology\WorldView for
Developers 2.1\ActiveX\Main\

Support Directory=<path to WorldView OCX>
Help Directory=<full path of help directory: same as WorldView
for Developers help>

You may use the WorldView HTML help files provided in the
Distribution directory, or you may use your own help file. This help file
will be displayed from the right mouse button popup menu Help item.

Self-registration of the WorldView OCX will prepend the Support
Directory with axWorldView.zip to the
HKEY_LOCAL_MACHINE\Software\Microsoft\JavaVM Classpath key. If this
value is not the correct path to the axiWor1dView.zip, then Java will not
function properly with the WorldView OCX.

Once all of the above conditions have been met, the WorldView OCX
may be registered. WorldView.ocx is a self-registering OCX (ActiveX
Control). If you are not using an installation kit, you should use
regsvr3?2.exe to perform self-registration.

If your installer will install DirectX 5, you may set the following registry
key to ensure that the WorldView OCX will be registered after any DirectX
5 files have been registered:

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\RunOnce
BREGISTER_WORLDVIEWZ=regsvr32 /s “<path to WorldView
0CX>\WorldView.ocx”

Note * We do not recommend installing the NT Service Pack 3 from
another installer. Users should be instructed to install NT Service Pack
3 before starting your installation.

PLATINUM WorldView for Developers User Guide

WorldView for Developers Runtimes =®

Including your own Help files

Including your own Help files

WorldView for Developers automatically includes the WorldView
browser help files, in HTML format, in all runtime applications
generated. These files are accessed from the right mouse menu item Help
while the mouse is within the WorldView window in runtime mode. This
help system originates with the file named helpindex.html in the
WorldView\Help folder.

To include your own help files, or to amend and include ours as well, you
may simply edit the included HTML files using any HTML editor.

You may also include help files using the IWorldViewDeveloper
property: UserHelpFile. Your help system may be in either HTML or
WinHelp format. The location of your file may be entered either as a full
path, or as a relative path using the WorldView for Developers executable
as its origin.

WorldView License Agreement

The WorldView Browser License Agreement WVLicense.txt, must be
installed with your runtime applications if no other license is to be
included. Please include this file in the root directory of your installation.

This file is installed in the WorldView for Developers Distribution folder.

PLATINUM WorldView for Developers User Guide 5-5 =

m WorldView for Developers Runtimes

Embedding WorldView for Developers at Runtime

Embedding WorldView for Developers at
Runtime

Entering your Password enables WorldView for Developers. It does not
affect your runtime applications, which must be enabled individually.

WorldView for Developers supports runtime license keys, which enables
you to embed WorldView for Developers in your application and run on
a user’s machine without a .lic file present. This is done using the
standard ActiveX mechanism for runtime licensing: WorldView for
Developers gives you a runtime license key, which you embed in your
application.

To acquire the runtime license key, select WorldView for Developers »
Copy Key To Clipboard from your computer’s Start menu. This will copy
the runtime license key to the Windows clipboard. You can now paste it
into your application.

Embedding in C++ at Runtime

In C++, the MFC framework permits you to specify a runtime license key
when creating an instance of an ActiveX Control.

» First, paste the runtime license key into your application’s source
code:

jidefine RUNTIME_LICENSE_KEY L”<1license key pasted from clipboard>”

» To create the WorldView for Developers control, specify the license
key as an argument to the Create method as follows:

BOOL bResult = m_pWorldView->Create(
NULL,
“WorTdView”,
WS_CHILD|WS_VISIBLE,
rect,
this,
0,

RUNTIME_LICENSE_KEY

)

PLATINUM WorldView for Developers User Guide

WorldView for Developers Runtimes =®

Embedding WorldView for Developers at Runtime

Embedding in J++ at Runtime

» InJ++, paste the runtime license key into your application’s source
code:

private static final String RUNTIME_LICENSE_KEY = “<license key>”;
private static final String
WORLDVIEW_CLSID = “{0939A9F5-1788-11d2-8FDE-0060975B8649};

» To create the WorldView for Developers control, you will need to use
the class com.ms.com.LicenseMgr which enables you to create COM
objects using a license key.

import com.ms.com.*;

ILicenseMgr licenseMgr = (ILicenseMgr) new LicenseMgr();
Object control = TicenseMgr.createWithlic(
RUNTIME_LICENSE_KEY,
WORLDVIEW_CLSID,
nult,
ComContext.INPROC_SERVER
)3

The createWithLic method returns a raw Java/COM object. You may wish
to convert this to an instance of com.ms.com.ActiveXControl which can
be treated as an AWT component and easily added to a window of your
Java application.

ActiveXControl = new ActiveXControl ((IUnknown)control);

Embedding in Visual Basic at Runtime

In Visual Basig, it is NOT necessary to explicitly acquire the runtime
license key as in C++ and J++. Visual Basic will automatically embed the
WorldView for Developers runtime license key in your .exe when you
compile your Visual Basic program.

PLATINUM WorldView for Developers User Guide 5-7 m

m WorldView for Developers Runtimes

Embedding WorldView for Developers at Runtime

m 5-8 PLATINUM WorldView for Developers User Guide

" 6

The WorldView COM Object

This chapter describes the WorldView COM object, and lists and defines
its properties and methods.

1914 €0 T 10 Tty (o o TN 6-2
IWorldView Interface i 6-3

Properties
World
Methods
GetBrowser
IWorldViewDeveloper Interface i, 6-4

Properties
AutoRotate ConsoleVisible DashboardEnabled
DashboardOn Dithering FullColor
GraphicsMode GraphicsModeWhenMoving
HeadlightOn HighQualityText LoadTextures
NavigationMode NavigationSpeed PopupMenuEnabled
PreventCollisions SplashScreenEnabled UseAcceleration

UserHelpFile Viewpoint WebLinkEnabled
World

Methods
GetBrowser NextViewpoint PreviousViewpoint
Reload RestoreView StraightenUp
ViewAll

PLATINUM WorldView for Developers User Guide 6-1 =

® The WorldView COM Object

Introduction

Introduction

The WorldView COM object represents the WorldView ActiveX Control
itself. This is the only object in the WorldView COM API which can be
created by GUID, for example, via the CoCreatelnstance function in the
COM library.

The WorldView COM object supports two interfaces: IWorldView and
IWorldViewDeveloper. The IWorldViewDeveloper interface is available
only in WorldView for Developers. The IWorldView interface is available
both in the WorldView browser and in WorldView for Developers. The
IWorldViewDeveloper interface inherits from the IWorldView interface.

The GUID used to create the WorldView COM object differs in
WorldView and WorldView for Developers:

WorldView {b0d7d800-4ebf-11d0-9490-00a02494d8a5}

WorldView for Developers {0939A9F5-1788-11d2-8FDE-
0060975B8649}

This allows the two applications, as well as any runtime applications
generated by WorldView for Developers, to be installed on a single
machine without complications.

PLATINUM WorldView for Developers User Guide

The WorldView COM Object =
Introduction

IWorldView Interface

Properties

World
Prototype(Get) MWorld([out, retvall BSTR* url);

Prototype(Set) World([in] BSTR url);

Returns the URL of the active VRML world, or replaces the active
world with the VRML world located at the specified URL.

Methods

GetBrowser
Prototype GetBrowser([out, retval]l IVrmlBrowser** browser);

Returns the IVrmIBrowser interface to the VrmlBrowser object of
this browser instance. This interface can be used to control the
VRML scene in a fashion similar to the External Authoring Interface
(EAI). See IVrmIBrowser Interface for details.

PLATINUM WorldView for Developers User Guide 6-3 =

® The WorldView COM Object
Introduction

IWorldViewDeveloper Interface

The IWorldViewDeveloper interface inherits from the IWorldView
interface. This interface is accessible only in WorldView for Developers,
and not in the standard WorldView browser.

Properties

AutoRotate
Prototype(Get) AutoRotate([out, retvall boolean* autoRotate);

Prototype(Set) AutoRotate([in] boolean autoRotate);

Returns or sets the state of auto-rotation: TRUE if auto-rotation is
enabled; FALSE if disabled.

Controls whether WorldView automatically rotates objects. If auto-
rotation is enabled, an object rotated in study mode will continue
to spin after the mouse button is raised.

This setting can also be controlled using the Rotate Object
Automatically check box in the Options dialog.

ConsoleVisible

Prototype (Get) ConsoleVisible([out, retvall boolean*
consoleVisible);

Prototype(Set) ConsoleVisible([in] boolean consoleVisible);

Returns or sets whether the VRML console is currently visible: TRUE
if visible; FALSE if hidden.

The VRML console window will be placed on the screen in the
location last occupied in the most recent WorldView session.

m 6-4 PLATINUM WorldView for Developers User Guide

The WorldView COM Object =

Introduction

DashboardEnabled
Prototype (Get) DashboardEnabled([out, retval] boolean*
dashboardEnabled);
Prototype(Set) DashboardEnabled([in] boolean dashboardEnabled);

Controls whether WorldView's dashboard is enabled and available
for use: TRUE if enabled; FALSE if disabled.

The dashboard is the blue bar along the left and bottom of the
WorldView window which permits the user to control WorldView's
navigation features. It may be desirable to turn off the dashboard
in applications which do not require WorldView’s navigation
features.

If the dashboard is enabled, it may be selected from the right
mouse menu, and its features may be used. Disabling the
dashboard removes the item from the menu, and makes the
dashboard itself unavailable for use in the application.

This setting can also be controlled using the Show Navigation Bar
item on the browser’s right-mouse menu.

DashboardOn
Prototype(Get) DashboardOn([out, retvall boolean* dashboardOn);

Prototype(Set) DashboardOn([in] boolean dashboardOn);

Controls whether WorldView’s dashboard is visible by default

when your application is first launched: TRUE if visible; FALSE if
hidden.

DashboardEnabled must be set to TRUE for DashboardOn to have
any visible effect.

The user may show or hide the dashboard using the Show
Navigation Bar item on the browser’s right-mouse menu.

PLATINUM WorldView for Developers User Guide 6-5 m

® The WorldView COM Object

Introduction

Dithering

Prototype(Get) Dithering([out, retvall boolean* dithering);
Prototype(Set) Dithering([in] boolean dithering);

Returns or sets whether WorldView dithers while rendering: TRUE if
dithering is active; FALSE if inactive.

Dithering improves rendering quality, but may lower performance.

This setting may also be controlled using the Graphics » Dithering
item of the browser’s right-mouse menu.

FullColor

Prototype(Get) FullColor([out, retvall boolean* fullColor);
Prototype(Set) FullColor(Lin] boolean fullColor);

Returns or sets WorldView’s Full Color setting: TRUE if full color is
active; FALSE if inactive. See also WorldView's Full Color Setting.

This setting can also be controlled using the Graphics » Full Color
item of the browser’s right-mouse menu.

GraphicsMode

Prototype (Get) GraphicsMode([out, retvall enumGraphicsMode
graphicsMode) ;

Prototype(Set) GraphicsMode([in] enumGraphicsMode graphicsMode);

Returns or sets the current graphics mode. The graphics mode
controls how the browser renders the VRML scene.

The current graphics mode is stored as type enumGraphicsMode
and may take the following values:

SMOOTHSHADING = 0 (Slowest, Highest Resolution Rendering)
FLATSHADING =1
WIREFRAME 2 (Fastest, Lowest Resolution)

This setting can also be controlled using the Graphics popup menu
on the browser’s right mouse menu.

PLATINUM WorldView for Developers User Guide

The WorldView COM Object =

Introduction

GraphicsModeWhenMoving

Prototype(Get) GraphicsModeWhenMoving([out, retvall
enumGraphicsMode*graphicsMode) ;

Prototype(Set) GraphicsModeWhenMoving([in]
enumGraphicsModegraphicsMode) ;

Contains the graphics mode used while the user is moving
(navigating). This graphics mode is activated when navigation
begins. When navigation ends, the normal graphics mode is
restored. This property may be used to accelerate navigation in a
large world by switching to a faster, lower-resolution graphics
mode such as Wireframe while the user is moving through the
space.

This setting can also be controlled using the Graphics » When
Moving item on the browser’s right mouse menu.

The current graphics mode is stored as type enumGraphicsMode
and may take the following values:

SMOOTHSHADING = 0 (Slowest, highest resolution)

FLATSHADING =1

WIREFRAME = 2 (Fastest, lowest resolution)

NOCHANGE = 3 (The graphics mode is not changed to navigate.)
HeadlightOn

Prototype(Get) HeadlightOn([out, retvall boolean* headlightOn);
Prototype(Set) HeadlightOn([in] boolean headlightOn);

Returns or sets whether the headlight is enabled: TRUE if the
headlight is on, and FALSE if the headlight is off.

The headlight is a directional light which points in the same
direction as the 3D camera in the VRML scene. It is a simple means
to illuminate a VRML scene.

The state of the headlight can also be controlled using the Graphics
popup menu of the browser’s right mouse menu.

PLATINUM WorldView for Developers User Guide 6-7 m

® The WorldView COM Object

Introduction

HighQuality Text

Prototype (Get) HighQualityText([out, retval] boolean*
highQualityText);

Prototype(Set) HighQualityText([in] boolean highQualityText);

Returns or sets whether WorldView uses high quality text: TRUE if
high quality text is enabled; FALSE if disabled.

High quality text is constructed from polygons rather than
bitmaps, and therefore scales better and is less pixilated. However,
with long text strings, it is sometimes slower than “low-quality”
text.

This setting can also be controlled using the High Quality Text
check box in the Options dialog.

LoadTextures

Prototype(Get) LoadTextures([out, retvall boolean* loadTextures);
Prototype(Set) LoadTextures([in] boolean ToadTextures);

Controls whether WorldView loads textures: TRUE loads textures;
FALSE does not.

Not loading textures improves load time and rendering speed, but
may dramatically change the appearance of the VRML scene.

This setting can also be controlled using the Graphics » Load
Textures item of the browser’s right-mouse menu.

Note ° Setting this property will not affect a VRML world that is
already loaded, and will only affect worlds that are loaded after
it is set.

PLATINUM WorldView for Developers User Guide

The WorldView COM Object =
Introduction

NavigationMode

Prototype(Get) NavigationMode([out, retval] enumNavigationMode*
navigationMode);

Prototype(Set) NavigationMode([in] enumNavigationMode
navigationMode);

Returns or sets the current navigation mode of the browser.

The current navigation mode is stored as the type
enumNavigationMode which may take one of the following
values:

DEFAULT
WALK
PAN
TURN
ROLL
STUDY
JUMP

O — O

Note The navigation mode enumeration value for GOTO is
JUMP because GOTO is a reserved word in VB.

Setting the Navigation Mode to DEFAULT specifies that the container
does not wish to define a mode, and will instead defer to that
defined in the loaded content file itself.

The navigation mode may also be changed using the Movement
popup menu of the browser’s right-mouse menu.

PLATINUM WorldView for Developers User Guide 6-9 m

® The WorldView COM Object

Introduction
NavigationSpeed
Prototype (Get) NavigationSpeed([out, retval]
enumNavigationSpeed*navigationSpeed);
Prototype (Set) NavigationSpeed([in] enumNavigationSpeed
navigationSpeed);
Returns or sets the current navigation speed of the browser.
The current navigation speed is stored as the type
enumNavigationSpeed which may take one of the following
values:
VERYSLOW_SPEED = 0
SLOW_SPEED =1
MEDIUM_SPEED =2
FAST_SPEED =3
VERYFAST_SPEED = 4
PopupMenuEnabled
Prototype (Get)PopupMenuEnabled(Lout, retvall boolean*
popupMenuEnabled);
Prototype (Set) PopupMenuEnabled([in] boolean popupMenuEnabled);
Returns or sets whether WorldView’s popup (right-mouse button)
menu is enabled: TRUE if the menu is enabled; FALSE if disabled.
PreventCollisions

Prototype (Get) PreventCollisions([out, retval]boolean*
preventCollisions);

Prototype(Set) PreventCollisions([in] boolean preventCollisions);

Controls whether the user is permitted to collide with and enter 3D
geometry in the VRML scene, or if navigation stops when a
collision occurs: TRUE if collisions are prevented; FALSE if collisions
are permitted.

This setting can also be controlled using the Movement b Prevent
Collisions item of the browser’s right-mouse menu.

m 6-10 PLATINUM WorldView for Developers User Guide

The WorldView COM Object =

Introduction

SplashScreenEnabled

Prototype (Get) SplashScreentnabled([out, retval] boolean*
splashScreenknabled);

Prototype (Set) SplashScreentnabled([in] boolean
splashScreenEnabled);

Controls whether WorldView displays its splash screen while
loading a VRML world: TRUE if the splash screen is enabled; FALSE
if disabled.

The splash screen will appear only the first time your application is
run on any given machine.

UseAcceleration

Prototype (Get) UseAcceleration([out, retval] boolean*
useAcceleration);

Prototype(Set) UseAcceleration([in] boolean useAcceleration);

Returns or sets whether WorldView uses available 3D hardware
acceleration: TRUE if hardware acceleration is enabled; FALSE if
disabled.

This setting can also be controlled using the Use Hardware
Acceleration check box in the Options dialog.

UserHelpFile

Gets or sets the name of the associated User Help file. This file is
accessed in your final application from the right mouse menu item:
Help. This file will be the WorldView browser’s help file by default.

Prototype(Get) UserHelpFile([out, retvall BSTR *userHelpFile);

Prototype(Set) UserHelpFile([in] BSTR userHelpFile);

PLATINUM WorldView for Developers User Guide 6-11 =

® The WorldView COM Object

Introduction

m 6-12

Viewpoint

Prototype(Get) Viewpoint([out, retvall BSTR* viewPoint);
Prototype(Set) Viewpoint([in] BSTR viewPoint);

Returns or sets the name of the currently bound Viewpoint in the
VRML scene. This name is taken from the description field of the
Viewpoint node. The name passed in the viewPoint parameter
must match the description field of one of the Viewpoint nodes in
the VRML scene.

WebLinkEnabled

Prototype(Get) WeblLinkEnabled([out, retval] boolean
*WebLinkEnabled);

Prototype(Set) WebLinkEnabled([in] boolean WebLinkEnabled);

Returns or sets whether the web link is enabled: TRUE enables the
link; FALSE disables it.

This link is designed so that clicking on the PLATINUM logo in the
bottom right corner of the lower navigation bar launches the user’s
browser (if necessary), and jumps to the PLATINUM home page
URL. Disabling this property prevents this link from occurring.

World

Prototype(Get) MWorld([out, retvall BSTR* url);
Prototype(Set) World([in] BSTR url);
Returns or sets the URL of the active VRML file.

PLATINUM WorldView for Developers User Guide

The WorldView COM Object =

Introduction

Methods

GetBrowser
Prototype GetBrowser([out, retvall IVrmlBrowser** browser);

Returns the IVrmIBrowser interface to the VrmlBrowser object of
this browser instance. This interface can be used to control the
VRML scene in a fashion similar to the External Authoring Interface
(EAI). See the IVrmlBrowser Interface for details. This method is
inherited from the IWorldView interface.

NextViewpoint
Prototype NextViewpoint();
Sets the currently bound viewpoint to be the next viewpoint in the

viewpoint list. The viewpoint list is accessible from the Viewpoints
popup menu of the browser’s right-mouse menu.

PreviousViewpoint
Prototype PreviousViewpoint();
Sets the currently bound viewpoint to be the previous viewpoint in

the viewpoint list. The viewpoint list is accessible from the
Viewpoints popup menu of the browser’s right-mouse menu.

Reload
Prototype Reload();

Reloads the current VRML scene. The current world is unloaded,
and then reloaded from its original location. This can be useful to
restart an animation, or if a new version of a world is known to be
available.

RestoreView
Prototype RestoreView();

Restores the viewpoint to its initial location and orientation.

PLATINUM WorldView for Developers User Guide 6-13 =m

® The WorldView COM Object

Introduction

StraightenUp
Prototype StraightenUp();
Adjusts the current viewpoint to align it with the Y axis of the
world. This can be useful to realign the viewpoint with vertical after

a series of navigation options have left the viewpoint tilted with
respect to the world.

ViewAll
Prototype ViewAl1();

Zooms out from the current viewpoint so that the entire VRML
scene is visible. This action is identical to that of the Zoom Out
button on the navigation bar.

m 6-14 PLATINUM WorldView for Developers User Guide

= 7

WorldView OLE Automation
Interface

This chapter describes the OLE Automation Interface, a superset of the
IWorldViewDeveloper interface visible to Visual Basic users.

WorldView OLE AutomationInterfaceccoviiiiiiiieeiineeeennnns 7-2

PLATINUM WorldView for Developers User Guide 7-1 =

B WorldView OLE Automation Interface

WorldView OLE Automation Interface

WorldView OLE Automation Interface

The WorldView OLE Automation interface is a superset of the
IWorldViewDeveloper interface. It contains all its properties and
methods, and uses the same prototypes as IWorldViewDeveloper.

It contains one additional property: AboutBox.

AboutBox
Prototype AboutBox () ;

Invokes the WorldView About Box, which displays the product
name, copyright and version number. This method is inherited
from the IWorldView interface.

7-2 PLATINUM WorldView for Developers User Guide

External Authoring
Interface using COM

This chapter describes accessing WorldView’s External Authoring
Interface using Microsoft’s Component Object Model (COM).

INtroductionoouiiiiiiiiiiiiiiiii ittt i i i i
Using WorldView's COM APIHfrOmM CH+ .o coiiiiiniieiiiiireieienenenenees
USiNg COMfrom Javaovveninininieinenieieienienencncesenencncanenes
Using WorldView’s COM API from other Languages
WorldView for Developers COM APILibraryccccvvvviieienenenne.

PLATINUM WorldView for Developers User Guide 8-1

m External Authoring Interface using COM

Introduction

Introduction

WorldView for Developers provides an extensive set of APIs through the
Microsoft Component Object Model (COM). The key advantage of COM
over traditional libraries is language independence. This means that you
can control WorldView from a program written in any language that
supports COM: C++, Java, Visual Basic, Delphi, and many others.

The most important concept in COM is the idea of an interface. An
interface is a collection of operations, called methods. An objectin COM
is an entity which supports one or more interfaces. For example, in the
WorldView COM AP], there is a COM object which represents a VRML
SFBool field. This object supports an interface called IVrmlSFBool, which
has these methods:

GetValue: Gets the current value of the SFBool field
SetValue: Sets the current value of the SFBool field
ToString: Returns a text string containing the SFBool field’s value.

Object-oriented programming languages such as C++ or Java use a
pointer or reference to an object to enable you to access the methods of
that object. In contrast, COM uses a pointer to one or more of the object’s
interfaces, instead of a direct pointer to the object.

Several of the COM objects in the WorldView COM API support multiple
interfaces. Each interface contains a group of related methods. This is
designed to prevent enormous lists of methods under a single interface.
Each interface supports a given functionality, which dictates the methods
that are supported by the interface.

Given a pointer/reference to an interface of a WorldView COM object,
you can access another interface of that object by querying for that
interface. To query, specify the interface that you wish to find, and COM
will return a pointer/reference to that interface, or an error if the COM
object you are querying does not support the interface requested. The
way to query for an interface will differ depending on the language used.

To learn more about COM, consult Microsoft's COM web site at
http://www.microsoft.com/com.

PLATINUM WorldView for Developers User Guide

External Authoring Interface usingCOM =

Using WorldView's COM API from C++

Using WorldView's COM API from C++

The C++ interface for the COM API is a group of .h files in the include
subdirectory of the WorldView for Developers installation directory. To
use this interface, add this line to each C++ source file that will be using
COM API functionality:

fHinclude “ComIfc.h”

Make sure that the WorldView for Developers include subdirectory is in
your compiler’s include path.

The use of COM from C++ is explained in detail in the COM Tutorial in
the Microsoft Visual C++ Online Reference. In general, using the COM
API is very similar to ordinary programming with C++ objects. A pointer
to a COM interface looks like a regular C++ pointer to an object, and
methods of the interface can be invoked much like C++ object methods.

Using the COM API differs from normal C++ programming in its use of
reference counting. C++ is not a garbage-collected language like Java that
transparently manages your memory use. You must inform COM when
you intend to hold a reference (pointer) to an object, and you must also
inform COM when you wish to release a reference on an object. COM
maintains a reference count for each COM object and destroys an object
when its reference count reaches zero. Every COM object has two
methods used for reference counting:

AddRef: Adds a reference to the COM object.
(Increases reference count by 1.)

Release: Releases a reference on the COM object.
(Decreases reference count by 1.)

Also, given a pointer to a COM interface, you can “query” for another
interface supported by the underlying COM object as described in the
above section. To query, you use the method QueryInterface which is
supported by every COM object.

PLATINUM WorldView for Developers User Guide 8-3 m

m External Authoring Interface using COM
Using WorldView's COM API from C++

» To use Querylnterface to obtain a pointer to another interface:

IVrmlField* pVrmlField;

// Obtain the IVrmISFBool interface of the COM object
// from the IVrmIField interface
IVrm1SFBool* pVrmlSFBool = NULL;
HRESULT hr = pVrmlField->QueryInterface(IID_IVrml1SFBool,
(void**) &pVrmlSFBool);
if (FAILEDChr)) {
// This COM object does not support IVrmlSFBool,
// report an error.

}

// Got the IVrmlSFBool interface, can call its methods now.
pVrm1SFBool->SetValue(FALSE) ;

m 84 PLATINUM WorldView for Developers User Guide

External Authoring Interface usingCOM =
Using COM from Java

Using COM from Java

Developers using the Microsoft Java VM and Java compiler can take
advantage of WorldView’s COM API by using Microsoft Java/COM. Java/
COM is a Microsoft extension to Java which enables Java programs to
transparently access and implement COM objects.

In Java/COM, COM objects are made available to Java by running the
program jactivex on the COM object library’s TLB files. This will generate
Java class files that represent the COM objects. This program is
distributed with the Microsoft Java SDK. The Java/COM class files are also
distributed with WorldView, and installed on your system when
WorldView is installed. These classes reside in the package
platinum.javacom.

Unlike C++, Java is a garbage-collected language, so the reference
counting required for C++ is not necessary in Java. Java will automatically
detect when you are done using a particular COM object and destroy it.

COM interfaces are represented in Java by Java interfaces. Querying from
one interface to another is as simple as type casting.

» For example, to query from an IVrmlField interface to IVrmISFBool:

IVrmlField field;

IVrmISFBool sfbool = (IVrmISFBool) field;

// Got the IVrmlSFBool interface, call a method of it.
sfbool.SetValue(false);

Microsoft Java/COM is discussed in detail in the documentation for the
Microsoft Java SDK, available from http://www.microsoft.com/java/sdk.

PLATINUM WorldView for Developers User Guide 85 m

m External Authoring Interface using COM

Using WorldView's COM API from other Languages

Using WorldView's COM API from other
Languages

It is possible to use the COM API from any programming language that
supports Microsoft COM. Consult the documentation from the vendor

of the programming language for specifics on that language’s integration
with COM.

WorldView for Developers COM API Library

This is an external authoring interface, implemented via COM, which
enables communication between the VRML scene and other desktop
applications such as Visual Basic, Java, and Internet Explorer via Visual
Basic and other COM automation compliant scripting languages. This
documentation assumes the reader has VRML knowledge. (See The
Virtual Reality Modeling Language Specification, V.2.0, ISO/IEC CD

14772.) WorldView external scripting classes are implemented as a set of
COM obijects.

PLATINUM WorldView for Developers User Guide

= 9

WorldView for Developers
Objects

This chapter describes and defines the Objects available in WorldView for
Developers External Authoring Interface.

WorldView External Scripting Objects’ Structureccoovueenen. 9-8

VrmiBaseNode ObjJectsccoveieiieniieniieniiineeienisniennenneneens 9-10

VIMIBaseNOdeccooiuiiiiiiiniiiiieieeieineieenecnesncnscncnncnns 9-11
GetBrowser GetType ToString

VIMINOAE ...eiiiiiiiiiiiiiiiiiiiiiiiiitieiecetenenecnesncnncnanns 9-12
GetBrowser GetEventin GetEventOut GetExposedField
GetType ToString

VIMISCHPINOAE ...oviiiniiiiiiiiiiiiiiiiiiiiiietieieietesnsnresessnss 9-14
GetBrowser GetEventin GetEventOut GetField
GetType ToString

PLATINUM WorldView for Developers User Guide 9-1 m

WorldView for Developers Objects

9-2

VrmIBrowser ObJectcocvuiiiiiiiiiieieieiiiiiieereesesesacacenens 9-16
AddRoute CreateVrmlFromString
CreateVrmlIFromURL DeleteRoute GetCurrentFrameRate GetCurrentSpeed
GetName GetNode GetVersion GetWorldURL
LoadURL ReplaceWorld SetDescription

VrmIEvent Objectcoviuiniiiiiiiiiiiiiiiiiiiiieieieiecscecnnenns 9-19
Clone GetName GetTimeStamp GetValue
ToString

VrmlEventOutObserver Objectcccvviiiiiiiiiieieieinirernennnns 9-20
Callback

VrmlField Objectsocvviuiiiiiiiiiiiiiiiiiiiiiiiiieienesesnsesennnnss 9-21

81011 =) U [9-22
Advise Clone GetType ToString
Unadvise

VrmIConstFieldcoviiiiiiieiiereneroneennsesssssscssscssssnscsnsons 9-24
Advise Clone GetType Unadvise

VrmICONSTMFCOIOrciiviiiiierieieereseensecsssessnsscssnasassnnss 9-25
Advise Clone GetlValue GetSize
GetType GetValue ToString Unadvise

VIMICONSEIMFFIOatcooviiiiiiiiiiiiiiiiiiiiiiiiiiietieneenecennns 9-27
Advise Clone GetlValue GetSize
GetType GetValue ToString Unadvise

VrmICONStMFI@Idocvviuiniiiiiiiiiiiiiiiiiiiiererienesesecesnsanens 9-28
Advise Clone GetSize GetType
ToString Unadvise

VIMICONSIMFINt32itiiiiiiiiiiiiiiiiiiiiiiiiiiitiecieneenecnennes 9-30
Advise Clone GetlValue GetSize
GetType GetValue ToString Unadvise

PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =

VrmiConstMFNode

Advise Clone

GetType GetValue
VrmlConstMFRotation

Advise Clone

GetType GetValue
VrmlConstMFString

Advise Clone

GetType GetValue
VrmlConstMFTime

Advise Clone

GetType GetValue
VrmlConstMFVec2f

Advise Clone

GetType GetValue
VrmlConstMFVec3f

Advise Clone

GetType GetValue
VrmlConstSFBool

Advise Clone

ToString Unadvise
VrmlConstSFColor

Advise Clone

GetGreen GetBlue

Unadvise
VrmlConstSFFloat

Advise Clone

ToString Unadvise

PLATINUM WorldView for Developers User Guide

GetlValue
ToString

GetlValue
ToString

GetlValue
ToString

GetlValue
ToString

GetlValue
ToString

GetlValue
ToString

GetType

GetSize
Unadvise

GetSize
Unadvise

GetSize
Unadvise

GetSize
Unadvise

GetSize
Unadvise

GetSize
Unadvise

GetRed
ToString

GetValue

9-3 =

WorldView for Developers Objects

VrmlConstSFImage
Advise Clone
GetPixels GetType
Unadvise
VrmlConstSFInt32
Advise Clone
ToString Unadvise
VrmlConstSFNode
Advise Clone
ToString Unadvise
VrmlIConstSFRotation
Advise Clone
GetX GetY
Unadvise
VrmlIConstSFString
Advise Clone
ToString Unadvise
VrmlConstSFTime
Advise Clone
ToString Unadvise
VrmlConstSFVec2f
Advise Clone
GetX GetY
VrmlConstSFVec3f
Advise Clone
GetX GetY
Unadvise
VrmIMFColor
AddValue Advise
Delete GetlValue
GetValue InsertValue
ToString Unadvise

GetComponents
GetWidth

Getz

GetType

Clear
GetSize
SetlValue

GetHeight
ToString

GetValue
ToString

GetValue
Unadvise

GetValue
ToString

Clone
GetType
SetValue

PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =

VIMIMEFIOatcoviiiiiiiiiiinieeeeeeeeeeeecocnnsasscecesccsonnnnnes 9-67
AddValue Advise Clear Clone
Delete GetlValue GetSize GetType
GetValue InsertValue SetlValue SetValue
ToString Unadvise

R4 01 117 | 3 (=] [« [AR 9-70
Advise Clear Clone Delete
GetSize GetType ToString Unadvise

VIMIMEINE3 2 ..t iiiiiiiiiiitiiieeeeeeeneeeensceesnsscesanscasnssccnnas 9-72
AddValue Advise Clear Clone
Delete GetlValue GetSize GetType
GetValue InsertValue SetlValue SetValue
ToString Unadvise

VIMIMENOGEcoviiiiiiiiiinnneneeeeeeeeeessoscsnsasscecccscssnnnnnns 9-74
AddValue Advise Clear Clone
Delete GetlValue GetSize GetType
GetValue InsertValue SetlValue SetValue
SetValueFromConstMFNode SetValueFromMFNode
ToString Unadvise

VIMIMFEROtAtioON ..o iiiiiiiiiiieiiiiieeeeieneeeennceeesonscasnscccnnas 9-78
AddValue Advise Clear Clone
Delete GetlValue GetSize GetType
GetValue InsertValue SetlValue SetValue
ToString Unadvise

VIMIMFSEIIING o.oniiiiiiiiiiiiiiiiiiitiiititititentesenesscscncncncnnns 9-81
AddValue Advise Clear Clone
Delete GetlValue GetSize GetType
GetValue InsertValue SetlValue SetValue
ToString Unadvise

VIMIMETIME ..iiiiiiiititiieeeeeeneneneeceeeeeeceessonssssscasaccccsnns 9-84
AddValue Advise Clear Clone
Delete GetlValue GetSize GetType
GetValue InsertValue SetlValue SetValue
ToString Unadvise

PLATINUM WorldView for Developers User Guide 9-5 m

® WorldView for Developers Objects

VIMIMEVEC2f .. eiiieiiiiiiiiiiiiiiiiiiiieiiiiiieitiecneentnecnennns 9-87
AddValue Advise Clear Clone
Delete GetlValue GetSize GetType
GetValue InsertValue SetlValue SetValue
ToString Unadvise
VIMIMEVEC3S .. eiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiitiecneentnecnennns 9-90
AddValue Advise Clear Clone
Delete GetlValue GetSize GetType
GetValue InsertValue SetlValue SetValue
ToString Unadvise
B 748 101 2 = T) 9-93
Advise Clone GetType GetValue
SetValue ToString Unadvise
VIMISFCOIOY . .viiniiiiiiiiiiiitieieiieieeieceeneescnecnesscnesncnnes 9-95
Advise Clone GetBlue GetGreen
GetRed GetType GetValue SetValue
ToString Unadvise
VIMISFFIOAtciniiiiiiiiiiiiiiiiiiiiiiiiiiitiiiieiienneneenennennes 9-97
Advise Clone GetType GetValue
SetValue ToString Unadvise
VEMISFIMAZE . .vvitiniiiiiiiiiiiiieeieeieseesecaesacssssssscsscnccncnns 9-98
Advise Clone GetComponents GetHeight
GetPixels GetType GetWidth SetValue
ToString Unadvise
VIMISFINE32 ... iiiiiiiiiiiiiiitieteaeresenccosessecsnsssossnscasnnss 9-101
Advise Clone GetType GetValue
SetValue ToString Unadvise
VEMISFNOAEoiniiiiiiiiiiiiiiiiiiitieteeereececsarsocescnsnnces 9-102
Advise Clone GetType GetValue
SetValue ToString Unadvise

9-6

PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =

VIMISFROtatioNcovviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiientereenennsnes 9-104
Advise Clone GetAngle GetType
GetValue GetX GetY Getz
SetValue ToString Unadvise

VIMISFSHNG covvniiiiiiiiiiiiiiiiiiiiiitiiiiieieiinieiencncenenencns 9-106
Advise Clone GetType GetValue
SetValue ToString Unadvise

VIMISFTIME . .tiiiiitiiiiiiiiiiitininiiretareesssssnsncnsososnsnncnes 9-108
Advise Clone GetType GetValue
SetValue ToString Unadvise

VIMISFVEC2f ..o tiieiiiiiiiiiiiiiiiiiiiiiiieiieieeiecntenenncnccnnns 9-110
Advise Clone GetType GetValue
GetX GetY SetValue ToString

Unadvise

RY 48 101 S o 9-112
Advise Clone GetType GetValue
GetX GetY Getz SetValue
ToString Unadvise

PLATINUM WorldView for Developers User Guide 9-7 m

® WorldView for Developers Objects

E 9-8

VrmlObjectFactory Interface

CreateVrmlConstMFColor
CreateVrmlConstMFInt32
CreateVrmlConstMFRotation
CreateVrmIConstMFTime
CreateVrmlConstMFVec3f
CreateVrmlConstSFColor
CreateVrmlConstSFImage
CreateVrmlConstSFNode
CreateVrmIConstSFString
CreateVrmlConstSFVec2f
CreateVrmIMFColor
CreateVrmIMFInt32
CreateVrmIMFRotation
CreateVrmIMFTime
CreateVrmIMFVec3f
CreateVrmISFColor
CreateVrmISFImage
CreateVrmISFNode
CreateVrmISFString
CreateVrmISFVec2f

VrmiScriptimplementation Interface

EventsProcessed
ProcessEvent

CreateVrmlConstMFFloat
CreateVrmlConstMFNode
CreateVrmIConstMFString
CreateVrmlConstMFVec2f
CreateVrmlConstSFBool
CreateVrmlConstSFFloat
CreateVrmlConstSFInt32
CreateVrmlConstSFRotation
CreateVrmIConstSFTime
CreateVrmlConstSFVec3f
CreateVrmIMFFloat
CreateVrmIMFNode
CreateVrmIMFString
CreateVrmIMFVec2f
CreateVrmISFBool
CreateVrmISFFloat
CreateVrmISFInt32
CreateVrmISFRotation
CreateVrmISFTime
CreateVrmISFVec3f

Initialize
Shutdown

PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =

WorldView External Scripting Objects’ Structure

WorldView External Scripting Objects’
Structure

This chart is provided for your convenience, and describes the structure
of the Objects available in WorldView’s EAI. Objects are arranged
alphabetically throughout the rest of the chapter, for your convenience.

cautomation
|
VrmlBaseNode
+- VrmlNode
+- VrmlScriptNode

VrmlEvent
Vrml EventOutObserver
- VrmlObjectFactory
+- VrmIScriptImplementation

+_

|

|

|

+- VrmlBrowser
+_

+_

+

!

+- VrmlField

| +- VrmlSFBool

| +- VrmlSFColor
| +- VrmlSFFToat
| +- VrmlSFImage
| +- VrmISFInt32
| +- VrmlSFNode

| +- VrmlSFRotation
| +- Vrm1SFString
| +- VrmISFTime

| +- VrmlSFVec2f
| +- VrmISFVec3f
|

PLATINUM WorldView for Developers User Guide 9-9 m

® WorldView for Developers Objects

WorldView External Scripting Objects” Structure

VrmlField (continued)

+- VrmlConstField

| +- VrmlConstSFBool
+- VrmlConstSFColor
+- VrmlConstSFFloat
+- VrmlConstSFImage
+- VrmlConstSFInt32
+- VrmlConstSFNode
+- VrmlConstSFRotation
+- VrmlConstSFString
+- VrmlConstSFTime
+- VrmlConstSFVec2f
+- VrmlConstSFVec3f

|

|

|

|

|

|

|

|

|

|

|

| +- VrmlConstMField

| +- VrmlConstMFCoTor
| +- VrmlConstMFFToat
| +- VrmlConstMFINnt32
| +- VrmlConstMFNode
| +- VrmlConstMFRotation
| +- VrmlConstMFString
| +- VrmlConstMFTime
| +- VrmlConstMFVec2f
| +- VrmlConstMFVec3f
|

4

VrmIMField

+- VrmIMFColor

+- VrmIMFFloat

+- VrmIMFInt32

+- VrmIMFNode

+- VrmIMFRotation
+- VrmIMFString
+- VrmIMFTime

+- VrmIMFVec2f

+- VrmIMFVec3f

|
+ -
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

= 9-10 PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =
VrmiBaseNode Objects

VrmiBaseNode Objects

The WorldView COM API distinguishes between “regular” nodes and
Script nodes. Script nodes differ from regular nodes in several ways: they
cannot have exposedFields, their fields can be read and written, and their
eventOuts can be written to. Due to these differences, the WorldView
COM API provides different interfaces for Script nodes and non-Script
nodes. Script nodes are represented by the IVrmlScriptNode interface,
and non-Script nodes by the IVrmINode interface.

However, Script nodes and non-Script nodes have some properties in
common. For this reason, the IVrmlScriptNode and I[VimINode
interfaces both inherit from a common superinterface: IVrmlBaseNode.

This distinction between Script and non-Script nodes is also made by the
VRML Java Scripting Reference. See the VRML 97 specification Annex B.

PLATINUM WorldView for Developers User Guide 9-11 =m

® WorldView for Developers Objects

VrmiBaseNode

VrmiBaseNode

Base node for IVimINode and IVrmlScriptNode.

IVrmiBaseNode Interface

" 9-12

GetBrowser
Prototype GetBrowser([out, retvall IVrmIBrowser* browser);

Returns the IVrmlBrowser interface for the VRML browser which
contains the node. The IVrmlBrowser interface can be used to
inquire about browser statistics such as frame rate, and to add and
delete routes. See [VrmiIBrowser Interface for more information.

GetType
Prototype GetType([out, retval] BSTR *nodetype);

Returns the type of the node as a string.

ToString
Prototype ToString([out, retval]l BSTR* string);

Returns a text string representation of the node. The result is a legal
VRML definition for the node.

PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =
VrmiNode

VrmINode

A node in the VRML scene.

IVrmiINode Interface

GetBrowser
Prototype GetBrowser([out, retval]l IVrmlBrowser* browser);

Returns the IVrmlBrowser interface for the VRML browser which
contains the node. The IVrmlBrowser interface can be used to
inquire about browser statistics such as frame rate, to add/delete
routes, etc. See [VrmlBrowser Interface for more information.

GetEventin

Prototype CGetEventIn([in] BSTR eventInName,
fout, retval]l IVrmlField* field);

Returns an IVrmlField interface referencing the node’s eventln
whose name is eventInName. The return value can be converted to
the appropriate subinterface of the IVrmlField interface, such as
IVrmISFBool.

The returned interface is write-only.

GetEventOut
Prototype GetEventOut([in] BSTR eventOutName,
[out, retval] IVrmlConstField* field);

Returns an IVrmlField interface referencing the node’s eventOut
whose name is eventOutName. The return value can be converted
to the appropriate subinterface of the IVrmlConstField interface,
such as IVrmlConstSFBool.

The returned interface is read-only.

PLATINUM WorldView for Developers User Guide 9-13 =

® WorldView for Developers Objects

VrmiINode

GetExposedField

Prototype GetExposedField([in] BSTR fieldName,
[out, retval] IVrmlField* field);

Returns an IVrmlField interface referencing the node’s
exposedField whose name is fieldName. The return value can be
queried to the appropriate subinterface of the IVrmlField interface,
such as IVrmISFBool.

The returned interface may be read and written.

GetType
Prototype String GetType()

Returns the type of the node as a string.

ToString
Prototype ToString(Lout, retvall BSTR* string);

Returns a text string representation of the node. The result is a legal
VRML definition for the node.

m 9-14 PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =

VrmiScriptNode

VrmliScriptNode

This node is similar to a VrmINode. The only difference between them is
that VimINode is a node in the scene, and VrmlScriptNode is a script that
can control and/or respond to nodes within the scene.

The IVrmlScriptNode interface permits the script OCX to inquire about
the eventlns, eventOuts, fields and containing VRML browser of the
corresponding Script node. The IVrmlScriptNode interface supports the
IVrmlBaseNode interface.

Note that the Java equivalents of the methods of IVrmlScriptNode reside
in the Script base class. Thus, some methods of Script are implemented
by the VRML browser, and some are overridden by user-created
descendant classes of Script. In COM, this is not possible, so the
functionality provided by WorldView resides in the IVrmlScriptNode
interface, and the functionality written by the user resides in the
IVrmlScriptimplementation interface.

IVrmiScriptNode Interface

GetBrowser
Prototype CGetBrowser([out, retval]l IVrmIBrowser* browser);

Returns the IVrmlBrowser interface for the VRML browser which
contains the corresponding Script node. The IVrmlBrowser
interface can be used to inquire about browser statistics such as
frame rate, and to add and delete routes, etc. See IVrmlBrowser
Interface for more information.

GetEventin

Prototype CGetEventIn([in] BSTR eventInName,
Lout, retvall] IVrmiField* field);

Returns an IVrmlField interface referencing the Script node’s
eventln whose name is eventinName. The return value can be
converted to the appropriate subinterface of the IVrmlField
interface, for example IVrmISFBool.

The returned interface is write-only.

PLATINUM WorldView for Developers User Guide 9-15 =m

® WorldView for Developers Objects

VrmiScriptNode

GetEventOut
Prototype GetEventOut([in] BSTR eventOutName,
[out, retval] IVrmlField* field);

Returns an IVrmlField interface referencing the Script node’s
eventOut whose name is eventOutName. The return value can be
converted to the appropriate subinterface of the IVrmlField
interface, for example IVrmISFBool.

The returned interface may be read and written.

GetField
Prototype CGetField([in] BSTR fieldName,
[out, retvall IVrmlField* field);

Returns an IVrmlField interface referencing the Script node’s field
whose name is fieldName. The return value can be queried to the
appropriate subinterface of the IVrmlField interface, for example
IVrmISFBool.

The returned interface may be read and written.

GetType
Prototype GetType([out, retvall BSTR *type);

Returns the type of the corresponding Script node. The return value
will always be Script.

ToString
Prototype ToString(Lout, retvall BSTR* string);

Returns a text string representation of the Script node. The result
will be a legal VRML definition for the corresponding Script node.

m 9-16 PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =
VrmIBrowser Object

VrmiBrowser Object

The VrmlBrowser object provides access to and control over the
WorldView browser, and provides a means for creating new VRML data
objects as needed.

IVrmiIBrowser Interface

AddRoute

Prototype AddRoute([inJIVrmlBaseNode*fromNode,[in BSTRfromEventOut,
[in] IVrmlBaseNode* toNode, [in] BSTR toEventIn);

Adds a route between the specified eventOut and eventIn of the
given nodes.

CreateVrmIFromString

Prototype CreateVrmlFromString([in] BSTR vrml,
[out,retval] IVrmlConstMFNode** constmfNode);

Parses a string into a VRML scene, and returns the nodes for the
resulting scene.

CreateVrmiIFromURL

Prototype CreateVrmlFromURL([in] IVrmIMFString* url,
[in]IVrmlIBaseNode* baseNode, [in] BSTR event);

Gets the VRML scene from the given URL or URLs. The browser will
try the first URL, then the second, then the rest in order, until one
loads or all URLs have been tried. When the scene is downloaded
and parsed, it is sent to the [IVrmIBaseNode node's IVimIMFNode
eventln named by the event argument.

DeleteRoute

Prototype DeleteRoute([inlVrmIBaseNodefromNode[inBSTRromEventOut,
[in] IVrmiBaseNode* toNode, [in] BSTR toEventIn);

Deletes a route between the specified eventOut and eventIn of the
given nodes.

PLATINUM WorldView for Developers User Guide 9-17 =

WorldView for Developers Objects

VrmiBrowser Object

GetCurrentFrameRate
Prototype GetCurrentFrameRate([out, retval] float* rate);

Gets the current frame rate of the browser.

GetCurrentSpeed
Prototype GetCurrentSpeed([out, retvall float* speed);

Gets the current velocity of the bound viewpoint in meters/second.

GetName
Prototype GetName([out, retvall BSTR* name);

Returns the name of the VRML Browser.

GetNode
Prototype CGetNode([in] BSTR name, [out,retval]l IVrmlNode** node);

Gets a DEF'd node by name. Nodes given names in the root
scenegraph are available to this method. DEF'd nodes in Inlines, or
those returned by CreateVrmlFromString or CreateVrmlFromURL
are not available.

GetVersion
Prototype CGetVersion([out, retvall BSTR* version);

Returns the version of the VRML browser.

GetWorldURL
Prototype GetWorldURL([out, retvall BSTR* url);

Gets the URL for the root of the current world, or an empty string
if the URL is not available.

PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =

VrmIBrowser Object

LoadURL

Prototype LoadURL([in] IVrmIMFString* url,
[in] IVrmIMFString* parameter);

Launches the specified VRML file. It requires 2 string parameters:
the first is the URL of the VRML file to be loaded; the 2nd is a
parameter which may be used in the same way as the Anchor
node’s parameter field (for example: parameter="target=_top”).

Note ¢ A parameter such as the one used in this example will
work only in a container that supports frames.

ReplaceWorld
Prototype ReplaceWorld([in] IVrmIMFNode* worldMFNode);

Replaces the current world with the passed nodes.

SetDescription
Prototype SetDescription([in] BSTR description);

Sets the description of the current world in a browser specific
manner. (In WorldView, it prints the description to the status bar
in Internet Explorer or Netscape Navigator.) To clear the
description, pass an empty string as an argument.

PLATINUM WorldView for Developers User Guide 9-19 =

® WorldView for Developers Objects
VrmiEvent Object

VrmlEvent Object

An eventIn or eventOut associated with a node, the VrmlEvent object
provides information on communications data passed between nodes
within a VRML scene.

The ProcessEvent method of IVrmlScriptimplementation is passed an
IVrmlEvent interface which describes the event the Script node has just
received. The IVrmlEvent interface is analogous to the Event class in the
VRML Java Scripting Reference, Section B.9.2.1.

IVrmlEvent Interface

Clone
Prototype Clone([out, retval]l IVrmlEvent** event);

Duplicates this event into a new COM object and returns its
VrmlEvent interface. This may be useful for saving an event as a
variable in your script for later use.

GetName
Prototype CGetName([out, retval] BSTR* name);

Returns the name of the eventln at which the event arrived. This
permits a Script with multiple eventlns to distinguish between
events that arrived at different eventlns.

GetTimeStamp
Prototype CetTimeStamp([out, retvall double* time);

Returns the time the event arrived.

= 9-20 PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =

VrmiEventOutObserver Object

GetValue
Prototype CGetValue([out, retval] IVrmlConstField** constfield);

Returns an IVrmlConstField interface containing the value of the
event. The IVrmlConstField interface can be queried to the
interface corresponding to the eventIn'’s type, for instance,
IVrmlConstSFBool, to get specific information about the event
value.

ToString
Prototype ToString(Lout, retvall BSTR* string);

Returns a text string representation of the event. The string will
display the contents of the event'’s value field in a human-readable
format. This may be useful for debugging purposes.

VrmlEventOutObserver Object

An interface that must be implemented by the application, and is
notified when an event on the field, for which it was registered or
“advised,” occurs.

IVrmlEventOutObserver Interface

Callback

Prototype Callback([in] IVrmlConstField* value,
[in] double timeStamp, [in] VARIANT* userData);

The callback routine to enable the geometry to notify an external
program when certain events occur. The field parameter is the
node’s field or exposed field that is being tracked. The timestamp
is a receive variable that is set when the event occurs, and userData
is the data defined in the VrmlField Advise call used to register this
callback.

PLATINUM WorldView for Developers User Guide 9-21 =

® WorldView for Developers Objects

VrmiField Objects

VrmlField Objects

m 9-22

The family of VrmlField COM objects represent all of the field data types
available in VRML. There is a COM interface in the COM API
corresponding to each of the field data types, and an additional COM
interface which corresponds to the same data type but cannot be
modified, called Const for constant. All of these COM interfaces inherit
the IVrmlField interface, which provides functionality common to all
field objects.

VrmlField objects (VrmlField and objects derived from it) define the data
types used by a VRML scene. These objects provide access to and
manipulation of the information within these data types.

The Const prefix indicates a read only field, usually associated with an
eventOut. These classes support the getValue() method. Some classes
support additional convenience methods to get value(s) from the object.

SF means single values. MF means multiple values. An MFField is an array
of the base field type.

The InsertValue method, which applies to all the MF type classes, may
only be used if the MFNode or MFField into which you wish to insert
values is not empty: that is, if the Node or Field already contains at least
one other object. If you insert an object into an empty array, there will be
no error posted, but there will be no resultant action. You may not insert
into a blank array.

An event is a message sent from one node to another as defined by a
route. Events signal external stimuli, changes to field values, and
interactions between nodes. An event consists of a time stamp and a field
value.

An eventln is a logical receptor attached to a node which receives events.

An eventOut is a logical output terminal attached to a node from which
events are sent. The eventOut also stores the event most recently sent.

An eventOutObserver is an interface which must be implemented by the
application, and is notified when an event on the field, for which it was
registered or “advised,” occurs.

PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =

VrmiField

VrmliField

Base class for all fields (single/multi-valued, const/non-const).

IVrmlField Interface

Advise

Prototype Advise([in] IVrmlEventOutObserver* eventOutObserver,
[in] VARIANT* userData);

Permits a program using the COM API to receive notification when
the value of this field changes. The parameter eventOutObserver
must contain the IVrmlEventOutObserver interface of a COM
object implemented by the user program. When the field’s value
changes, the Callback method of the IVrmIEventOutObserver
interface will be invoked and passed the new value, the time at
which the change occurred, and the VARIANT specified in the
userData parameter.

Clone
Prototype Clone([out, retval]l IVrmlIField** field);

Creates a duplicate copy of the COM object and returns the
IVrmlField interface of the newly created object.

If the field is an eventIn, eventOut, field or exposedField, the new
COM object is identical to the old one, in that it points to the same
eventIn, eventOut, field or exposedField. However if the field is
“unattached,” that is, created through the IVrmlObjectFactory
interface, then a new, unattached field containing a copy of the
field’s data is returned.

PLATINUM WorldView for Developers User Guide 9-23 =

® WorldView for Developers Objects

VrmiField

GetType
Prototype GetType([out, retval] enumFieldType* type);

Returns the type of the field. The type is returned as an integer;
using the numeric values assigned to each type are taken in the Java
External Authoring Interface (EAI) proposal.

Field type value Field type value

SFBOOL 1 MFNODE 11
SFIMAGE 2 SFROTATION 12
SFTIME 3 MFROTATION 13
SFCOLOR 4 SFSTRING 14
MFCOLOR 5 MFSTRING 15
SFFLOAT 6 SFVEC2F 16
MFFLOAT 7 MFVEC2F 17
SFINT32 8 SFVEC3F 18
MFINT32 9 MFVEC3F 19
SFNODE 10 MFTIME 20

ToString
Prototype ToString([out, retval] BSTR* s);

Returns a text string representation of the field. The result will be a
legal VRML definition for the field.

Unadvise

Prototype Unadvise([in] IVrmlEventOutObserver*
eventOutObserver);

Stops notifying the specified IVrmlEventOutObserver of changes
in this field’s value.

m 9-24 PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =

VrmiConstField

VrmlConstField

Defines all VRML data types. These are read-only versions of the field
type, and any object defined as VrmlConstField cannot be updated. These
are usually the datatypes of eventOuts.

The IVrmlConstField interface is the base interface for all Const field
types, such as IVrmlConstSFBool and IVrmlConstMFNode. It inherits the
methods of the IVrmlField interface. It defines no new methods of its
own.

To determine if an IVrmlField interface field is a Const field, query to the
IVrmlConstField interface. If the query succeeds, the field must be Const.

IVrmlConstField Interface

Advise

Prototype Advise([in] IVrmlEventOutObserver* eventOutObserver,
[in] VARIANT* userData);

Permits a program using the COM API to receive notification when
the value of this field changes.

Clone
Prototype Clone([out, retval]l IVrmlIField** field);

Creates a duplicate copy of the COM object and returns the
IVrmlField interface of the newly created object.

GetType
Prototype GetType([out, retval] enumFieldType* type);

Returns the type of the field.

Unadvise

Prototype Unadvise([in] IVrmlEventOutObserver*
eventOutObserver);

Stops notifying the specified IVrmlEventOutObserver of changes
in this field’s value.

PLATINUM WorldView for Developers User Guide 9-25 =

® WorldView for Developers Objects

VrmiConstMFColor

VrmlConstMFColor

The VrmlConstMFColor COM object represents a read-only MFColor
field in the VRML scene. An MFColor field specifies zero or more RGB
(red-green-blue) color triples. Each color triple consists of three floating
point numbers in the range 0.0 to 1.0.

The VrmlConstMFColor object supports the IVimlConstMFColor,
IVrmlConstMField, IVrmlConstField and IVrmlField interfaces.

IVrmlConstMFColor Interface

Advise
Prototype Advise([in] IVrmlEventOutObserver* eventOutObserver,
[in] VARIANT* userData);

Starts notifying the specified IVrmlEventOutObserver interface of
changes in this field's value. Note that although this field is read-
only to COM AP], it may be changed by other events in the VRML
scene. This method is inherited from the IVrmliField Interface.

Clone
Prototype Clone([out, retval]l IVrmIField** field);

Creates a duplicate copy of the COM object. This method is
inherited from the IVrmlField Interface.

Get1Value

Prototype GetlValue([in] int index, [out] float *r,
Lout] float *g, [out] float *b);

Retrieves the index'th color triple and stores the red, green and blue
values of the triple in the variables r, g, and b, respectively.

GetSize
Prototype GetSize([out, retvall int* size);

Returns the number of RGB color triples in the field. This method
is inherited from the IVrmlConstMField Interface.

m 9-26 PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =

VrmiConstMFColor

GetType
Prototype GetType([out, retval] enumFieldType* type);

Returns the type of this field, which will be MFCOLOR (5). This
method is inherited from the IVrmliField Interface.

GetValue
Prototype GetValue([out] float* values);

Copies all color triples in the field into the values array. The first
triple will be copied into values[0], values[1], and values|[2] in R,
G, B order; the second triple into values|3], values[4], values[5],
and so on.

The values array must be large enough to accommodate the result
or a crash may occur. The number of elements required is 3 times
the result of the GetSize method.

ToString
Prototype ToString([out, retval] BSTR* s);

Returns a text string representation of the field. The result will be a
legal VRML definition for the field.

Unadvise
Prototype Unadvise([in] IVrmlEventOutObserver* eventOutObserver);

Stops notifying the specified IVrmlEventOutObserver of changes
in this field’s value. This method is inherited from the IVrmIMField
Interface.

PLATINUM WorldView for Developers User Guide 9-27 =

® WorldView for Developers Objects

VrmiConstMFFloat

VrmlConstMFFloat

The VrmlConstMFFloat COM object represents a read-only MFFloat field
in the VRML scene. An MFFloat field specifies zero or more single-
precision floating point numbers.

The VrmlConstMFFloat object supports the IVimlConstMFFloat,
IVrmlConstMField, IVrmlConstField and IVrmlField interfaces.

IVrmlConstMFFloat Interface

m 9-28

Advise

Prototype Advise([in] IVrmlEventOutObserver* eventOutObserver,
[in] VARIANT* userData);

Starts notifying the specified IVrmlEventOutObserver interface of
changes in this field’s value. Note that although this field is read-
only to COM AP], it may be changed by other events in the VRML
scene. This method is inherited from the IVrmliField Interface.

Clone
Prototype Clone(lout, retval]l IVrmIField** field);

Creates a duplicate copy of the COM object. This method is
inherited from the IVrmIMField Interface.

Get1Value
Prototype CGetlValue([in] int index, [out, retvall float *value);

Retrieves the index’th floating point number from the field and
stores it in the value parameter.

GetSize
Prototype GetSize([out, retvall int* size);

Returns the number of floating point numbers in the field. This
method is inherited from the IVrmiConstField Interface.

PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =

VrmiConstMField

GetType
Prototype GetType([out, retval] enumFieldType* type);

Returns the type of this field, which will be MFFLOAT (7). This
method is inherited from the IVrmliField Interface.

GetValue
Prototype GetValue([out] float* values);

Copies all of the floating point numbers in the field into the values
array.

The values array must be large enough to accommodate the result
or a crash may occur. The number of elements required is returned
by the GetSize method.

ToString
Prototype ToString([out, retval] BSTR* s);

Returns a text string representation of the field. The result will be a
legal VRML definition for the field.

Unadvise
Prototype Unadvise([in] IVrmlEventOutObserver* eventOutObserver);

Stops notifying the specified IVrmlEventOutObserver of changes
in this field’s value. This method is inherited from the IVrmiField
Interface.

VrmilConstMField

The VrmlConstMField family of objects represent multiple value, read-
only fields in the VRML scene, for example VrmlConstMFColor. All
objects in the VrmlConstMField family support the IVimlConstMField,
IVrmlConstField and IVrmlField interfaces.

PLATINUM WorldView for Developers User Guide 9-29 =

® WorldView for Developers Objects

VrmiConstMField

IVrmlConstMField Interface

= 9-30

Advise

Prototype Advise([in] IVrmlEventOutObserver* eventOutObserver,
[in] VARIANT* userData);

Starts notifying the specified IVrmlEventOutObserver interface of
changes in this field’s value. Note that although this field is read-
only to COM AP], it may be changed by other events in the VRML
scene. This method is inherited from the IVrmiField Interface.
Clone
Prototype Clone([out, retvall IVrmlField** field);
Creates a duplicate copy of the COM object. This method is
inherited from the IVrmlField Interface.
GetSize
Prototype GetSize([out, retvall int* size);
Returns the number of elements in the field. The definition of an
element will vary depending on the type of the field. See the
description of this method for the specific field type.
GetType
Prototype GetType([out, retval] enumFieldType* type);

Returns the type of this field. This method is inherited from the
IVrmlField Interface.

ToString
Prototype ToString([out, retval] BSTR* s);

Returns a text string representation of the field. The result will be a
legal VRML definition for the field.

Unadyvise

Prototype Unadvise([in] IVrmlEventOutObserver*
eventOutObserver);

Stops notifying the specified IVrmlEventOutObserver of changes
in this field’s value. Inherited from the IVrmIiField Interface.

PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =

VrmiConstMFInt32

VrmlConstMFInt32

The VrmlConstMFInt32 COM object represents a read-only MFInt32
field in the VRML scene. An MFInt32 field specifies zero or more 32-bit
integers.

The VrmlConstMFInt32 object supports the IVimlConstMFInt32,
IVrmlConstMField, IVrmlConstField and IVrmlField interfaces.

IVrmlConstMFInt32 Interface

Advise

Prototype Advise([in] IVrmlEventOutObserver* eventOutObserver,
[in] VARIANT* userData);

Starts notifying the specified IVrmlEventOutObserver interface of
changes in this field’s value. Note that although this field is read-
only to COM AP], it may be changed by other events in the VRML
scene. This method is inherited from the IVrmiField Interface.
Clone
Prototype Clone([out, retvall IVrmlField** field);
Creates a duplicate copy of the COM object. This method is
inherited from the IVrmlField Interface.
Get1Value
Prototype GetlValue([in] int index, [out, retvall int *value);

Retrieves the index’th integer from the field and stores it in the
value parameter.

GetSize
Prototype GetSize([out, retvall int* size);

Returns the number of integers in the field. This method is
inherited from the IVrmlConstMField Interface.

PLATINUM WorldView for Developers User Guide 9-31 =

WorldView for Developers Objects

VrmiConstMFInt32

GetType
Prototype GetType([out, retval] enumFieldType* type);

Returns the type of this field, which will be MFINT32 (9). This
method is inherited from the IVrmliField Interface.

GetValue
Prototype GetValue([out] int* values);

Copies all of the integers in the field into the values array.

The values array must be large enough to accommodate the result
or a crash may occur. The number of elements required is returned
by the GetSize method.

ToString
Prototype ToString([out, retval] BSTR* s);

Returns a text string representation of the field. The result will be a
legal VRML definition for the field.

Unadvise
Prototype Unadvise([in] IVrmlEventOutObserver*
eventOutObserver);

Stops notifying the specified IVrmlEventOutObserver of changes
in this field’s value. This method is inherited from the IVrmiField
Interface.

9-32 PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =
VrmiConstMFNode

VrmlConstMFNode

The VrmlConstMFNode COM object represents a read-only MFNode
field in the VRML scene. An MFNode field specifies zero or more VRML
nodes.

The VrmlConstMFNode object supports the IVrmlConstMFNode,
IVrmlConstMField, IVrmlConstField and IVrmlField interfaces.

IVrmlConstMFNode Interface

Advise

Prototype Advise([in] IVrmlEventOutObserver* eventOutObserver,
[in] VARIANT* userData);

Starts notifying the specified IVrmlEventOutObserver interface of
changes in this field’s value. Note that although this field is read-
only to COM AP], it may be changed by other events in the VRML
scene. This method is inherited from the IVrmiField Interface.
Clone
Prototype Clone([out, retvall IVrmlField** field);
Creates a duplicate copy of the COM object. This method is
inherited from the IVrmlField Interface.
Get1Value
Prototype GetlValue([in] int index,

[out, retvall IVrmIBaseNode **value);

Retrieves the index'th node from the field and stores it in the value
parameter. The node is represented by an IVrmlBaseNode
interface.

GetSize
Prototype GetSize([out, retvall int* size);

Returns the number of nodes in the field. This method is inherited
from the IVrmlConstMField Interface.

PLATINUM WorldView for Developers User Guide 9-33 =

WorldView for Developers Objects

VrmiConstMFNode

GetType
Prototype GetType([out, retval] enumFieldType* type);

Returns the type of this field, which will be MENODE (11). This
method is inherited from the IVrmliField Interface.

GetValue
Prototype GetValue([out] IVrmIBaseNode** values);

Copies all of the nodes in the field into the values array. Each node
is represented by an IVrmIBaseNode interface.

The values array must be large enough to accommodate the result
or a crash may occur. The number of elements required is returned
by the GetSize method.

ToString
Prototype ToString([out, retval] BSTR* s);

Returns a text string representation of the field. The result will be a
legal VRML definition for the field.

Unadvise
Prototype Unadvise([in] IVrmlEventOutObserver*
eventOutObserver);

Stops notifying the specified IVrmlEventOutObserver of changes
in this field’s value. This method is inherited from the IVrmiField
Interface.

9-34 PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =
VrmiConstMFRotation

VrmilConstMFRotation

The VrmlConstMFRotation COM object represents a read-only
MFRotation field in the VRML scene. An MFRotation field specifies zero
or more arbitrary rotations. Each rotation is specified by four floating
point values. The first three values specify a normalized rotation axis
vector about which the rotation takes place. The fourth value specifies the
amount of right-handed rotation about that axis in radians.

The VrmlConstMFRotation object supports the [VrmlConstMFRotation,
IVrmlConstMField, IVrmlConstField and IVrmlField interfaces.

IVrmlConstMFRotation Interface

Advise

Prototype Advise([in] IVrmlEventOutObserver* eventOutObserver,
[in] VARIANT* userData);

Starts notifying the specified IVrmlEventOutObserver interface of

changes in this field's value. Note that although this field is read-

only to COM AP], it may be changed by other events in the VRML

scene. This method is inherited from the IVrmliField Interface.
Clone

Prototype Clone([out, retval]l IVrmlIField** field);

Creates a duplicate copy of the COM object. This method is
inherited from the IVrmlField Interface.

Get1Value

Prototype GetlValue([in] int index, [out] float *x,
[out] float *y, [out] float *z, [out] float *angle);

Retrieves the index'th rotation. The rotation axis is stored in the
variables x, y, and z, respectively, and the angle of rotation is stored
in the variable angle.

PLATINUM WorldView for Developers User Guide 9-35 =

® WorldView for Developers Objects

VrmiConstMFRotation

GetSize
Prototype CGetSize([out, retvall int* size);

Returns the number of rotations in the field. This method is
inherited from the IVrmlConstMField Interface.

GetType
Prototype GetType([out, retval] enumFieldType* type);

Returns the type of this field, which will be MFROTATION (13).
This method is inherited from the IVrmlField Interface.

GetValue
Prototype GetValue([out] float* values);

Copies all of the rotations in the field into the values array. The first
rotation will be copied into values[0], values[1], values[2], and
values[3] in the order X, Y, Z, angle; the second triple into
values[4...7], and so on.

The values array must be large enough to accommodate the result
or a crash may occur. The number of elements required is 4 times
the result of the GetSize method.

ToString
Prototype ToString([out, retval] BSTR* s);

Returns a text string representation of the field. The result will be a
legal VRML definition for the field.

Unadvise
Prototype Unadvise([in] IVrmlEventOutObserver*
eventOutObserver);

Stops notifying the specified IVrmlEventOutObserver of changes
in this field’s value. This method is inherited from the IVrmiField
Interface.

m 9-36 PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =
VrmIConstMFString

VrmlConstMFString

The VrmlConstMFEString COM object represents a read-only MFString
field in the VRML scene. An MFString field specifies zero or more strings.

The VrmlConstMFString object supports the IVrmlConstMFString,
IVrmlConstMField, IVrmlConstField and IVrmlField interfaces.

IVrmlConstMFString Interface

Advise

Prototype Advise([in] IVrmlEventOutObserver* eventOutObserver,
[in] VARIANT* userData);

Starts notifying the specified IVrmlEventOutObserver interface of
changes in this field’s value. Note that although this field is read-
only to COM AP], it may be changed by other events in the VRML
scene. This method is inherited from the IVrmliField Interface.

Clone
Prototype Clone([out, retvall IVrmIField** field);

Creates a duplicate copy of the COM object. This method is
inherited from the IVrmlField Interface.

Get1Value
Prototype GetlValue([in] int index, [out, retval] BSTR* value);

Retrieves the index'th string from the field and stores it in the value
parameter.

GetSize
Prototype CGetSize([out, retvall int* size);

Returns the number of strings in the field. This method is inherited
from the IVrmlConstMField Interface.

PLATINUM WorldView for Developers User Guide 9-37 =

® WorldView for Developers Objects

VrmIConstMFString

GetType
Prototype: GetType([out, retval] enumFieldType* type);
Returns the type of this field, which will be MESTRING (15). This
method is inherited from the IVrmliField Interface.

GetValue
Prototype GetValue([out] BSTR* values);

Copies all of the strings in the field into the values array.

The values array must be large enough to accommodate the result
or a crash may occur. The number of elements required is returned
by the GetSize method.

ToString
Prototype ToString([out, retval] BSTR* s);
Returns a text string representation of the field. The result will be a
legal VRML definition for the field.

Unadvise
Prototype Unadvise([in] IVrmlEventOutObserver*

eventOutObserver);

Stops notifying the specified IVrmlEventOutObserver of changes
in this field’s value. This method is inherited from the IVrmiField
Interface.

m 9-38 PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =
VrmiConstMFTime

VrmlConstMFTime

The VrmlConstMFTime COM object represents a read-only MFTime field
in the VRML scene. An MFTime field specifies zero or more time values,
which are double-precision floating point numbers.

The VrmlConstMFTime object supports the IVimlConstMFTime,
IVrmlConstMField, IVrmlConstField and IVrmlField interfaces.

IVrmIConstMFTime Interface

Advise

Prototype Advise([in] IVrmlEventOutObserver* eventOutObserver,
[in] VARIANT* userData);

Starts notifying the specified IVrmlEventOutObserver interface of
changes in this field’s value. Note that although this field is read-
only to COM AP], it may be changed by other events in the VRML
scene. This method is inherited from the IVrmiField Interface.

Clone
Prototype:Clone([out, retval] IVrmlField** field);

Creates a duplicate copy of the COM object. This method is
inherited from the IVrmlField Interface.

Get1Value
Prototype GetlValue([in] int index, [out, retvall double* Time);

Retrieves the index’th time value from the field and stores it in the
value parameter.

GetSize
Prototype GetSize([out, retvall int* size);

Returns the number of time values in the field. This method is
inherited from the IVrmlConstMField Interface.

PLATINUM WorldView for Developers User Guide 9-39 =

WorldView for Developers Objects

VrmiConstMFTime

GetType
Prototype GetType([out, retval] enumFieldType* type);

Returns the type of this field, which will be MFTIME (20). This
method is inherited from the IVrmliField Interface.

GetValue
Prototype GetValue([out] double* values);

Copies all of the time values in the field into the values array.

The values array must be large enough to accommodate the result
or a crash may occur. The number of elements required is returned
by the GetSize method.

ToString
Prototype ToString([out, retval] BSTR* s);

Returns a text string representation of the field. The result will be a
legal VRML definition for the field.

Unadvise
Prototype Unadvise([in] IVrmlEventOutObserver*
eventOutObserver);

Stops notifying the specified IVrmlEventOutObserver of changes
in this field’s value. This method is inherited from the IVrmiField
Interface.

9-40 PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =
VrmlConstMFVec2f

VrmlConstMFVec2f

The VrmlConstMFVec2f COM object represents a read-only MFVec2f
field in the VRML scene. An MFVec2f field specifies zero or more 2D
vectors. Each vector is a pair of floating point values.

The VrmlConstMFVec2f object supports the IVimlConstMFVec2f,
IVrmlConstMField, IVrmlConstField and IVrmlField interfaces.

IVrmlConstMFVec2f Interface

Advise

Prototype Advise([in] IVrmlEventOutObserver* eventOutObserver,
[in] VARIANT* userData);

Starts notifying the specified IVrmlEventOutObserver interface of
changes in this field’s value. Note that although this field is read-
only to COM AP], it may be changed by other events in the VRML
scene. This method is inherited from the IVrmiField Interface.
Clone
Prototype Clone([out, retvall IVrmlField** field);
Creates a duplicate copy of the COM object. This method is
inherited from the IVrmlField Interface.
Get1Value

Prototype GetlValue([in] int index, [out] float *x,
fout] float *y);

Retrieves the index’th 2D vector and stores the X and Y
components of the vector in the variables x and y, respectively.

GetSize
Prototype CGetSize([out, retvall int* size);

Returns the number of 2D vectors in the field. This method is
inherited from the IVrmlConstMField Interface.

PLATINUM WorldView for Developers User Guide 9-41 =m

WorldView for Developers Objects

VrmlConstMFVec2f

GetType
Prototype GetType([out, retval] enumFieldType* type);

Returns the type of this field, which will be MFVEC2F (17). This
method is inherited from the IVrmliField Interface.

GetValue
Prototype GetValue([out] float* values);

Copies all of the 2D vectors in the field into the values array. The
first 2D vector will be copied into values[0] and values|[1] in X, Y
order; the second 2D vector into values[2] and values[3], and so
on.

The values array must be large enough to accommodate the result
or a crash may occur. The number of elements required is 2 times
the result of the GetSize method.

ToString
Prototype ToString([out, retval] BSTR* s);

Returns a text string representation of the field. The result will be a
legal VRML definition for the field.

Unadvise
Prototype Unadvise([in] IVrmlEventOutObserver*
eventOutObserver);

Stops notifying the specified IVrmlEventOutObserver of changes
in this field’s value. This method is inherited from the IVrmlField
Interface.

9-42 PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =
VrmlConstMFVec3f

VrmlConstMFVec3f

The VrmlConstMFVec3f COM object represents a read-only MFVec3f
field in the VRML scene. An MFVec3f field specifies zero or more 3D
vectors. Each vector consists of three floating point values.

The VrmlConstMFVec3f object supports the IVimlConstMFVec3f,
IVrmlConstMField, IVrmlConstField and IVrmlField interfaces.

IVrmlConstMFVec3f Interface

Advise

Prototype Advise([in] IVrmlEventOutObserver* eventOutObserver,
[in] VARIANT* userData);

Starts notifying the specified IVrmlEventOutObserver interface of
changes in this field’s value. Note that although this field is read-
only to COM AP], it may be changed by other events in the VRML
scene. This method is inherited from the IVrmiField Interface.
Clone
Prototype Clone([out, retvall IVrmlField** field);
Creates a duplicate copy of the COM object. This method is
inherited from the IVrmlField Interface.
Get1Value

Prototype GetlValue([in] int index, [out] float *x,
fout] float *y);

Retrieves the index’th 3D vector and stores the X, Y and Z
components of the vector in the variables x, y and z, respectively.

GetSize
Prototype CGetSize([out, retvall int* size);

Returns the number of 3D vectors in the field. This method is
inherited from the IVrmlConstMField Interface.

PLATINUM WorldView for Developers User Guide 9-43 =m

® WorldView for Developers Objects
VrmlConstMFVec3f

GetType
Prototype GetType([out, retval] enumFieldType* type);

Returns the type of this field, which will be MFVEC3F (19). This
method is inherited from the IVrmliField Interface.

GetValue
Prototype GetValue([out] float* values);

Copies all of the 3D vectors in the field into the values array. The
first 3D vector will be copied into values[0], values|1] and
values[2] in X, Y, Z order; the second 3D vector into values|3...5],
and so on.

The values array must be large enough to accommodate the result
or a crash may occur. The number of elements required is 3 times
the result of the GetSize method.

ToString
Prototype ToString([out, retval] BSTR* s);

Returns a text string representation of the field. The result will be a
legal VRML definition for the field.

Unadvise
Prototype Unadvise([in] IVrmlEventOutObserver*
eventOutObserver);

Stops notifying the specified IVrmlEventOutObserver of changes
in this field’s value. This method is inherited from the IVrmlField
Interface.

m 9-44 PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =
VrmiConstSFBool

VrmlConstSFBool

The VrmlConstSFBool COM object represents a read-only SFBool field in
the VRML scene. An SFBool field contains a single boolean value, either
TRUE or FALSE.

The VrmlConstSFBool object supports the IVrmlConstSFBool,
IVrmlConstField and TVrmlField interfaces.

IVrmlIConstSFBool Interface

Advise

Prototype Advise([in] IVrmlEventOutObserver* eventOutObserver,
[in] VARIANT* userData);

Starts notifying the specified IVrmlEventOutObserver interface of
changes in this field’s value. Note that although this field is read-
only to COM AP], it may be changed by other events in the VRML
scene. This method is inherited from the IVrmiField Interface.

Clone
Prototype Clone([out, retvall IVrmIField** field);

Creates a duplicate copy of the COM object. This method is
inherited from the IVrmlField Interface.

GetType
Prototype GetType([out, retval] enumFieldType* type);

Returns the type of this field, which will be SFBOOL (1). This
method is inherited from the IVrmliField Interface.

GetValue
Prototype GetValue([out, retvall boolean* value);

Returns the value of the field.

PLATINUM WorldView for Developers User Guide 9-45 =m

® WorldView for Developers Objects

VrmIConstSFBool

ToString
Prototype ToString([out, retval] BSTR* s);
Returns a text string representation of the field The result will be a
legal VRML definition for the field.

Unadvise
Prototype Unadvise([in] IVrmlEventOutObserver*

eventOutObserver);

Stops notifying the specified IVrmlEventOutObserver of changes
in this field’s value. This method is inherited from the IVrmlField
Interface.

m 9-46 PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =
VrmiConstSFColor

VrmlConstSFColor

The VrmlConstSFColor COM object represents a read-only SFColor field
in the VRML scene. An SFColor field contains one RGB (red-green-blue)
color triple, specified by three floating point values.

The VrmlConstSFColor object supports the IVrmlConstSFColor,
IVrmlConstField and TVrmlField interfaces.

IVrmlConstSFColor Interface

Advise

Prototype Advise([in] IVrmlEventOutObserver* eventOutObserver,
[in] VARIANT* userData);

Starts notifying the specified IVrmlEventOutObserver interface of
changes in this field’s value. Note that although this field is read-
only to COM AP], it may be changed by other events in the VRML
scene. This method is inherited from the IVrmiField Interface.

Clone
Prototype Clone(lout, retval]l IVrmIField** field);

Creates a duplicate copy of the COM object. This method is
inherited from the IVrmlField Interface.

GetType
Prototype GetType([out, retval] enumFieldType* type);

Returns the type of this field, which will be SFCOLOR (4). This
method is inherited from the IVrmliField Interface.

GetRed
Prototype GetRed([out, retvall float* r);

Returns the red component of the field’s RGB color triple.

PLATINUM WorldView for Developers User Guide 9-47 =m

WorldView for Developers Objects

VrmiConstSFColor

GetGreen
Prototype GetGreen([out, retvall float* g);

Returns the green component of the field’s RGB color triple.

GetBlue
Prototype GetBlue([out, retval] float* b);

Returns the blue component of the field's RGB color triple.

GetValue
Prototype GetValue([out] float *values);

Returns the value of the field in the values array. The red, green and
blue components of the RGB color triple are returned in values[0],
values[1] and values|[2], respectively. The values array must be at
least 3 elements in size or a crash may occur.

ToString
Prototype ToString([out, retval] BSTR* s);

Returns a text string representation of the field. The result will be a
legal VRML definition for the field.

Unadvise
Prototype Unadvise([in] IVrmlEventOutObserver*
eventOutObserver);

Stops notifying the specified IVrmlEventOutObserver of changes
in this field’s value. This method is inherited from the IVrmiField
Interface.

9-48 PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =
VrmiConstSFFloat

VrmlConstSFFloat

The VrmlConstSFFloat COM object represents a read-only SFFloat field
in the VRML scene. An SFFloat field contains one single-precision
floating point number.

The VrmlConstSFFloat object supports the IVimlConstSFFloat,
IVrmlConstField and TVrmlField interfaces.

IVrmlConstSFFloat Interface

Advise

Prototype Advise([in] IVrmlEventOutObserver* eventOutObserver,
[in] VARIANT* userData);

Starts notifying the specified IVrmlEventOutObserver interface of
changes in this field’s value. Note that although this field is read-
only to COM AP], it may be changed by other events in the VRML
scene. This method is inherited from the IVrmiField Interface.

Clone
Prototype Clone(lout, retval]l IVrmIField** field);

Creates a duplicate copy of the COM object. This method is
inherited from the IVrmlField Interface.

GetType
Prototype GetType([out, retval] enumFieldType* type);

Returns the type of this field, which will be SFFLOAT (6). This
method is inherited from the IVrmliField Interface.

GetValue
Prototype CGetValue([out, retvall float *value);

Returns the value of the field.

PLATINUM WorldView for Developers User Guide 9-49 =m

® WorldView for Developers Objects

VrmiConstSFFloat

ToString
Prototype ToString([out, retval] BSTR* s);

Returns a text string representation of the field. The result will be a
legal VRML definition for the field.

Unadvise
Prototype Unadvise([in] IVrmlEventOutObserver* eventOutObserver);

Stops notifying the specified IVrmlEventOutObserver of changes
in this field’s value. This method is inherited from the IVrmlField
Interface.

m 9-50 PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =

VrmiConstSFImage

VrmlConstSFImage

The VrmlConstSFImage COM object represents a read-only SFimage field
in the VRML scene. An SFImage field defines an uncompressed two
dimensional pixel image. See Section 5.5 of the VRML 2.0 Specification
for a full explanation of the use of SFimage.

The VrmlConstSFImage object supports the IVrmlConstSFImage,
IVrmlConstField and TVrmlField interfaces.

IVrmlConstSFImage Interface

Advise
Prototype Advise([in] IVrmlEventOutObserver* eventOutObserver,
[in] VARIANT* userData);

Starts notifying the specified IVrmlEventOutObserver interface of
changes in this field's value. Note that although this field is read-
only to COM AP], it may be changed by other events in the VRML
scene. This method is inherited from the IVrmiField Interface.

Clone
Prototype Clone([out, retval]l IVrmlIField** field);

Creates a duplicate copy of the COM object. This method is
inherited from the IVrmlField Interface.

GetComponents
Prototype GetComponents([out, retvall int* components);

Returns the number of components in the image. The number of
components ranges from 1 to 4 and controls how pixel data is
interpreted. See Section 5.5 of the VRML 2.0 Specification for a full
explanation.

GetHeight
Prototype GetHeight([out, retvall int* height);

Returns the height of the image in pixels.

PLATINUM WorldView for Developers User Guide 9-51 =m

WorldView for Developers Objects

VrmiConstSFImage

GetPixels
Prototype CGetPixels([out] unsigned char *pixels);

Copies the pixel data of the image into the pixels array. The pixels
array must be at least width*height*components bytes in size or a
crash may occur.

GetType
Prototype GetType([out, retval] enumFieldType* type);

Returns the type of this field, which will be SFIMAGE (2). This
method is inherited from the IVrmliField Interface.

GetWidth
Prototype CGetWidth([out, retvall int* width);

Returns the width of the image in pixels.

ToString
Prototype ToString([out, retval] BSTR* s);

Returns a text string representation of the field. The result will be a
legal VRML definition for the field.

Unadvise
Prototype Unadvise([in] IVrmlEventOutObserver*
eventOutObserver);

Stops notifying the specified IVrmlEventOutObserver of changes
in this field’s value. This method is inherited from the IVrmiField
Interface.

9-52 PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =

VrmiConstSFInt32

VrmlConstSFInt32

The VrmlConstSFInt32 COM object represents a read-only SFInt32 field
in the VRML scene. An SFInt32 field contains a single 32-bit integer.

The VrmlConstSFInt32 object supports the [IVimlConstSFInt32,
IVrmlConstField and IVrmlField interfaces.

IVrmIConstSFInt32 Interface

Advise

Prototype Advise([in] IVrmlEventOutObserver* eventOutObserver,
[in] VARIANT* userData);

Starts notifying the specified IVrmlEventOutObserver interface of
changes in this field’s value. Note that although this field is read-
only to COM AP], it may be changed by other events in the VRML
scene. This method is inherited from the IVrmliField Interface.

Clone
Prototype Clone([out, retvall IVrmIField** field);

Creates a duplicate copy of the COM object. This method is
inherited from the IVrmlField Interface.

GetType
Prototype GetType([out, retval] enumFieldType* type);

Returns the type of this field, which will be SFINT32 (8). This
method is inherited from the IVrmiField Interface.

GetValue
Prototype CGetValue([out, retvall int *value);

Returns the value of the field.

PLATINUM WorldView for Developers User Guide 9-53 =

® WorldView for Developers Objects

VrmiConstSFNode

ToString
Prototype ToString([out, retval] BSTR* s);

Returns a text string representation of the field. The result will be a
legal VRML definition for the field.

Unadvise
Prototype Unadvise([in] IVrmlEventOutObserver*
eventOutObserver);

Stops notifying the specified IVrmlEventOutObserver of changes
in this field’s value. This method is inherited from the IVrmlField
Interface.

VrmlConstSFNode

The VrmlConstSFNode COM object represents a read-only SFNode field
in the VRML scene. An SENode field specifies a single VRML node, or the
value NULL to indicate that it is empty.

The VrmlConstSFNode object supports the [IVimlConstSFNode,
IVrmlConstField and IVrmlField interfaces.

IVrmlConstSFNode Interface

Advise
Prototype Advise([in] IVrmlEventOutObserver* eventOutObserver,
[in] VARIANT* userData);

Starts notifying the specified IVrmlEventOutObserver interface of
changes in this field’s value. Note that although this field is read-
only to COM AP], it may be changed by other events in the VRML
scene. This method is inherited from the IVrmiField Interface.

Clone
Prototype Clone([out, retval]l IVrmIField** field);

Creates a duplicate copy of the COM object. This method is
inherited from the IVrmlField Interface.

m 9-54 PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =

VrmiConstSFNode

GetType
Prototype GetType([out, retval] enumFieldType* type);

Returns the type of this field, which will be SENODE (10). This
method is inherited from the IVrmliField Interface.

GetValue
Prototype CGetValue([out, retval] IVrmIBaseNode **value);

Returns the value of the field. The returned node is represented by
an IVrmlBaseNode interface. The return value may also be NULL if
the SFNode field is empty. (The representation of NULL will differ
depending on the language you are using; consult the
documentation from the vendor.)

ToString
Prototype ToString([out, retval] BSTR* s);

Returns a text string representation of the field. The result will be a
legal VRML definition for the field.

Unadyvise
Prototype Unadvise([in] IVrmlEventOutObserver*
eventOutObserver);

Stops notifying the specified IVrmlEventOutObserver of changes
in this field’s value. This method is inherited from the IVrmlField
Interface.

PLATINUM WorldView for Developers User Guide 9-55 =

® WorldView for Developers Objects

VrmiConstSFRotation

VrmlConstSFRotation

The VrmlConstSFRotation COM object represents a read-only
SFRotation field in the VRML scene. An SFRotation field contains one
arbitrary rotation, specified by four floating point values. The first three
floating point values specify a normalized rotation axis vector about
which the rotation takes place. The fourth value specifies the amount of
right-handed rotation about that axis in radians.

The VrmlConstSFRotation object supports the IVimlConstSFRotation,
IVrmlConstField and IVrmlField interfaces.

IVrmlConstSFRotation Interface

m 9-56

Advise

Prototype Advise([in] IVrmlEventOutObserver* eventOutObserver,
[in] VARIANT* userData);

Starts notifying the specified IVrmlEventOutObserver interface of
changes in this field's value. Note that although this field is read-
only to COM AP], it may be changed by other events in the VRML
scene. This method is inherited from the IVrmliField Interface.

Clone
Prototype Clone([out, retval]l IVrmlIField** field);

Creates a duplicate copy of the COM object. This method is
inherited from the IVrmlField Interface.

GetAngle
Prototype CGetAngle([out, retvall float* angle);

Returns the field’s angle of rotation in radians.

PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =

VrmiConstSFRotation

GetValue
Prototype GetValue([out] float *values);

Returns the value of the field in the values array. The X, Y and Z
components of the field's rotation axis are returned in values|0],
values[1] and values|2], respectively. The rotation angle in radians
is returned in values|3]. The values array must be at least 4
elements in size or a crash may occur.

GetX
Prototype GetX([out, retvall float* x);

Returns the X component of the field’s rotation axis.

GetY
Prototype GetY([out, retvall float* y);

Returns the Y component of the field’s rotation axis.

GetZ
Prototype GetZ([out, retvall float* z);

Returns the Z component of the field’s rotation axis.

ToString
Prototype ToString([out, retval] BSTR* s);

Returns a text string representation of the field. The result will be a
legal VRML definition for the field.

Unadvise
Prototype Unadvise([in] IVrmlEventOutObserver*
eventOutObserver);

Stops notifying the specified IVrmlEventOutObserver of changes
in this field’s value. This method is inherited from the IVrmlField
Interface.

PLATINUM WorldView for Developers User Guide 9-57 =

® WorldView for Developers Objects

VrmlConstSFString

VrmiConstSFString

The VrmlConstSFString COM object represents a read-only SFString field
in the VRML scene. An SFString field specifies a single string.

The VrmlConstSFEString object supports the IVimlConstSFEString,
IVrmlConstField and IVrmlField interfaces.

IVrmIConstSFString Interface

Advise

Prototype Advise([in] IVrmlEventOutObserver* eventOutObserver,
[in] VARIANT* userData);

Starts notifying the specified IVrmlEventOutObserver interface of
changes in this field’s value. Note that although this field is read-
only to COM AP], it may be changed by other events in the VRML
scene. This method is inherited from the IVrmiField Interface.

Clone
Prototype Clone(lout, retval]l IVrmIField** field);

Creates a duplicate copy of the COM object. This method is
inherited from the IVrmlField Interface.

GetType
Prototype GetType([out, retval] enumFieldType* type);

Returns the type of this field, which will be SFSTRING (14). This
method is inherited from the IVrmliField Interface.

GetValue
Prototype CGetValue([out, retval] BSTR* value);

Returns the value of the field.

m 9-58 PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =
VrmiConstSFTime

ToString
Prototype ToString([out, retval] BSTR* s);

Returns a text string representation of the field. The result will be a
legal VRML definition for the field.

Unadyvise

Prototype Unadvise([in] IVrmlEventOutObserver*
eventOutObserver);

Stops notifying the specified IVrmlEventOutObserver of changes
in this field’s value. This method is inherited from the IVrmlField
Interface.

VrmlConstSFTime

The VrmlConstSFTime COM object represents a read-only SFTime field
in the VRML scene. An SFTime field contains a single time value, which
is a double-precision floating point number.

The VrmlConstSFTime object supports the IVimlConstSFTime,
IVrmlConstField and IVrmlField interfaces.

IVFrmIConstSFTime Interface

Advise

Prototype Advise([in] IVrmlEventOutObserver* eventOutObserver,
[in] VARIANT* userData);

Starts notifying the specified IVrmlEventOutObserver interface of
changes in this field’s value. Note that although this field is read-
only to COM AP], it may be changed by other events in the VRML
scene. This method is inherited from the IVrmliField Interface.

Clone
Prototype Clone([out, retval]l IVrmIField** field);

Creates a duplicate copy of the COM object. This method is
inherited from the IVrmlField Interface.

PLATINUM WorldView for Developers User Guide 9-59 =

® WorldView for Developers Objects

VrmIConstSFTime

GetType
Prototype GetType([out, retval] enumFieldType* type);

Returns the type of this field, which will be SFTIME (3). This
method is inherited from the IVrmliField Interface.

GetValue
Prototype CGetValue([out, retvall double *value);

Returns the time value of the field as a double-precision floating
point number.

ToString
Prototype ToString([out, retval] BSTR* s);

Returns a text string representation of the field. The result will be a
legal VRML definition for the field.

Unadvise
Prototype Unadvise([in] IVrmlEventOutObserver* eventOutObserver);

Stops notifying the specified IVrmlEventOutObserver of changes
in this field’s value. This method is inherited from the IVrmiField
Interface.

m 9-60 PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =

VrmlConstSFVec2f

VrmlConstSFVec2f

The VrmlConstSFVec2f COM object represents a read-only SFVec2f field
in the VRML scene. An SFVec2f field contains one 2D vector, specified by
two floating point values.

The VrmlConstSFVec2f object supports the IVrmlConstSFVec2f,
IVrmlConstField and TVrmlField interfaces.

IVrmlIConstSFVec2f Interface

Advise
Prototype Advise([in] IVrmlEventOutObserver* eventOutObserver,
[in] VARIANT* userData);

Starts notifying the specified IVrmlEventOutObserver interface of

changes in this field’s value. Note that although this field is read-

only to COM AP], it may be changed by other events in the VRML

scene. This method is inherited from the IVrmiField Interface.
Clone

Prototype Clone([out, retvall IVrmlField** field);

Creates a duplicate copy of the COM object. This method is
inherited from the IVrmlField Interface.

GetType
Prototype GetType([out, retval] enumFieldType* type);
Returns the type of this field, which will be SFVEC2F (16). This
method is inherited from the IVrmliField Interface.

GetValue
Prototype GetValue([out] float *values);
Returns the value of the field in the values array. The X and Y
components of the field’s 2D vector are returned in values[0] and

values[1], respectively. The values array must be at least 2 elements
in size or a crash may occur.

PLATINUM WorldView for Developers User Guide 9-61 =m

® WorldView for Developers Objects

VrmlConstSFVec2f

GetX
Prototype GetX([out, retvall float* x);

Returns the X component of the field's 2D vector.

GetY
Prototype GetY([out, retvall float* y);

Returns the Y component of the field's 2D vector.

ToString
Prototype ToString([out, retval] BSTR* s);

Returns a text string representation of the field. The result will be a
legal VRML definition for the field.

Unadvise
Prototype Unadvise([in] IVrmlEventOutObserver*
eventOutObserver);

Stops notifying the specified IVrmlEventOutObserver of changes
in this field’s value. This method is inherited from the IVrmlField
Interface.

m 9-62 PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =

VrmlConstSFVec3f

VrmlConstSFVec3f

The VrmlConstSFVec3f COM object represents a read-only SFVec3f field
in the VRML scene. An SFVec3f field contains one 3D vector, specified by
three floating point values.

The VrmlConstSFVec3f object supports the IVrmlConstSFVec3f,
IVrmlConstField and TVrmlField interfaces.

IVrmlIConstSFVec3f Interface

Advise
Prototype Advise([in] IVrmlEventOutObserver* eventOutObserver,
[in] VARIANT* userData);

Starts notifying the specified IVrmlEventOutObserver interface of

changes in this field’s value. Note that although this field is read-

only to COM AP], it may be changed by other events in the VRML

scene. This method is inherited from the IVrmiField Interface.
Clone

Prototype Clone([out, retvall IVrmlField** field);

Creates a duplicate copy of the COM object. This method is
inherited from the IVrmlField Interface.

GetType
Prototype GetType([out, retval] enumFieldType* type);
Returns the type of this field, which will be SFVEC3F (18). This
method is inherited from the IVrmliField Interface.

GetValue
Prototype GetValue([out] float *values);
Returns the value of the field in the values array. The X, Y, and Z
components of the field’s 3D vector are returned in values[0],

values[1] and values|2], respectively. The values array must be at
least 3 elements in size or a crash may occur.

PLATINUM WorldView for Developers User Guide 9-63 =

WorldView for Developers Objects

VrmlConstSFVec3f

GetX
Prototype GetX([out, retvall float* x);

Returns the X component of the field's 3D vector.

GetY
Prototype GetY([out, retvall float* y);

Returns the Y component of the field's 3D vector.

GetZ
Prototype GetY([out, retvall float* z);

Returns the Z component of the field's 3D vector.

ToString
Prototype ToString([out, retval] BSTR* s);

Returns a text string representation of the field. The result will be a
legal VRML definition for the field.

Unadvise
Prototype Unadvise([in] IVrmlEventOutObserver*
eventOutObserver);

Stops notifying the specified IVrmlEventOutObserver of changes
in this field’s value. This method is inherited from the IVrmlField
Interface.

9-64 PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =

VrmIMFColor

VrmIMFColor

The VrmIMFColor COM object represents a MFColor field in the VRML
scene. An MFColor field specifies zero or more RGB (red-green-blue)
color triples. Each color triple consists of three floating point numbers in
the range 0.0 to 1.0.

The VrmIMFColor object supports the IVrmIMFColor, IVrmIMField and
IVrmlField interfaces.

IVrmIMFColor Interface

AddValue
Prototype AddValue([in] float r, [in] float g, [in] float b);
Adds a new color triple to the end of the field. The red, green and

blue components of the new triple will be assigned the valuesr, g,
and b, respectively.

Advise
Prototype Advise([in] IVrmlEventOutObserver* eventOutObserver,
[in] VARIANT* userData);

Starts notifying the specified IVrmlEventOutObserver interface of
changes in this field’s value. This method is inherited from the
IVrmlField Interface.

Clear
Prototype Clear();

Clears the field by deleting all of the elements. This method is
inherited from the IVrmIMField Interface.

Clone
Prototype Clone([out, retval]l IVrmIField** field);

Creates a duplicate copy of the COM object. This method is
inherited from the IVrmlField Interface.

PLATINUM WorldView for Developers User Guide 9-65 =

WorldView for Developers Objects

VrmIMFColor

9-66

Delete
Prototype Delete([in] int index);

Deletes the index’th color triple. This method is inherited from the
IVrmIMField Interface.

Get1Value

Prototype GetlValue([in] int index, [out] float *r,
Lout] float *g, [out] float *b);

Retrieves the index'th color triple and stores the red, green and blue
values of the triple in the variables r, g, and b, respectively.

GetSize
Prototype GetSize([out, retvall int* size);

Returns the number of RGB color triples in the field. This method
is inherited from the IVrmIMField Interface.

GetType
Prototype GetType([out, retval] enumFieldType* type);

Returns the type of this field, which will be MFCOLOR (5). This
method is inherited from the IVrmliField Interface.

GetValue
Prototype GetValue([out] float* values);

Copies all of the color triples in the field into the values array. The
first triple will be copied into values|[0], values|[1], and values[2] in
R,G,B order; the second triple into values[3], values|[4], values[5],
and so on.

The values array must be large enough to accommodate the result
or a crash may occur. The number of elements required is 3 times
the result of the GetSize method.

PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =

VrmIMFColor

InsertValue

Prototype InsertValue([in] int index, [in] float r, [in] float g,
[in] float b);

Inserts a new color triple before the index’th color triple. The red,
green and blue components of the new triple are assigned the
values 1, g, b, respectively. The field is expanded to accommodate
the new color triple and the index’th color triple and all triples
following it are shifted one slot to make space for the new element.

Set1Value
Prototype SetlValue([in] int index, [in] float r, [in] float g,
[in] float b);

Sets the index'th color triple in the field. The red, green and blue
components of the RGB color triple are set to the values of ther, g,
and b parameters, respectively.

SetValue
Prototype SetValue([in] int size, [in] float *values);

Sets the value of the field. The values array should contain the color
triples, in R,G,B order and packed one after the other. In VB, the
size parameter should contain the number of color triples in the
values array. Make sure the values array contains at least size*3
elements or a crash may occur.

ToString
Prototype ToString([out, retval] BSTR* s);

Returns a text string representation of the field. The result will be a
legal VRML definition for the field.

Unadvise
Prototype Unadvise([in] IVrmlEventOutObserver*
eventOutObserver);

Stops notifying the specified IVrmlEventOutObserver of changes
in this field’s value. This method is inherited from the I'VrmlField
Interface.

PLATINUM WorldView for Developers User Guide 9-67 =m

® WorldView for Developers Objects

VrmIMFFloat

VrmIMFFloat

The VrmIMFFloat COM object represents a MFFloat field in the VRML

scene. An MFFloat field specifies zero or more single-precision floating
point numbers.

The VrmIMFFloat object supports the IVrmIMFFloat, IVrmIMField and
IVrmlField interfaces.

IVrmIiMFFloat Interface

m 9-68

AddValue
Prototype AddValue([in] float value);

Adds the value parameter as a new value at the end of the field. The
field will be expanded to accommodate the new element.

Advise

Prototype Advise([in] IVrmlEventOutObserver* eventOutObserver,
[in] VARIANT* userData);

Starts notifying the specified IVrmlEventOutObserver interface of
changes in this field’s value. This method is inherited from the
IVrmlField Interface.

Clear
Prototype Clear();

Clears the field by deleting all of the elements. This method is
inherited from the IVrmIMField Interface.

Clone
Prototype Clone([out, retval]l IVrmlIField** field);

Creates a duplicate copy of the COM object. This method is
inherited from the IVrmlField Interface.

PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =

VrmIMFFloat

Delete
Prototype Delete([in] int index);

Deletes the index'th value. This method is inherited from the
IVrmIMField Interface.

Get1Value
Prototype GetlValue([in] int index, [out, retvall float *value);

Retrieves the index'th floating point number from the field and
stores it in the value parameter.

GetSize
Prototype GetSize([out, retvall int* size);

Returns the number of floating point numbers in the field. This
method is inherited from the IVrmIMField Interface.

GetType
Prototype GetType([out, retval] enumFieldType* type);

Returns the type of this field, which will be MFFLOAT (7). This
method is inherited from the IVrmliField Interface.

GetValue
Prototype GetValue([out] float* values);

Copies all of the floating point numbers in the field into the values
array.

The values array must be large enough to accommodate the result
or a crash may occur. The number of elements required is returned
by the GetSize method.

InsertValue
Prototype InsertValue([in] int index, [in] float value);

Inserts a new value before the index’th value. All values following
the new value are shifted one slot to make space for the new
element.

PLATINUM WorldView for Developers User Guide 9-69 =m

® WorldView for Developers Objects

VrmIMFFloat
Set1Value
Prototype SetlValue([in] int index, [in] float value);
Sets the index'th value in the field to the value parameter.
SetValue
Prototype SetValue([in] int size, [in] float *values);
Sets the value of the field. The size parameter should contain the
number of values in the values array. Make sure the values array
contains at least size elements or a crash may occur.
ToString
Prototype ToString([out, retval] BSTR* s);
Returns a text string representation of the field. The result will be a
legal VRML definition for the field.
Unadvise
Prototype Unadvise([in] IVrmlEventOutObserver*
eventOutObserver);

Stops notifying the specified IVrmlEventOutObserver of changes
in this field’s value. This method is inherited from the I'VrmlField
Interface.

m 9-70 PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =

VrmIMField

VrmilMField

The VrmIMField family of objects represents multiple value fields in the
VRML scene, for example VrmIMFColor. All objects in the VrmIMField
family support the IVimIMField and IVrmlField interfaces.

IVrmIMField Interface

Advise
Prototype Advise([in] IVrmlEventOutObserver* eventOutObserver,
[in] VARIANT* userData);

Starts notifying the specified IVrmlEventOutObserver interface of
changes in this field’s value. This method is inherited from the
IVrmlField Interface.

Clear
Prototype Clear();

Clears the field by deleting all of the elements. The field will be
reset to zero length.

Clone
Prototype Clone([out, retvall IVrmIField** field);

Creates a copy of the COM object. This method is inherited from
the IVrmliField Interface.

Delete
Prototype Delete([in] int index);

Deletes the index’th element of the field. The gap created by
deleting the element is filled by moving all of the elements after it
up one slot. The field is resized to a capacity of one less element.

PLATINUM WorldView for Developers User Guide 9-71 =

WorldView for Developers Objects

VrmiIMField

GetSize
Prototype GetSize([out, retvall int* size);
Returns the number of elements in the field. The definition of an

element will vary depending on the type of field; see the
description of this method for specific field types.

GetType
Prototype GetType([out, retval] enumFieldType* type);

Returns the type of this field. This method is inherited from the
IVrmlField Interface.

ToString
Prototype ToString([out, retval] BSTR* s);

Returns a text string representation of the field. The result will be a
legal VRML definition for the field.

Unadvise
Prototype Unadvise([in] IVrmlEventOutObserver*
eventOutObserver);

Stops notifying the specified IVrmlEventOutObserver of changes
in this field’s value. This method is inherited from the I'VrmlField
Interface.

9-72 PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =
VrmIMFint32

VrmIMFInt32

The VrmIMFInt32 COM object represents a MFInt32 field in the VRML
scene. An MFInt32 field specifies zero or more 32-bit integers.

The VrmIMFInt32 object supports the IVrmIMFInt32, IVimIMField and
IVrmlField interfaces.

IVFrmIMFInt32 Interface

AddValue
Prototype AddValue([in] int value);
Adds the value parameter as a new value at the end of the field. The
field will be expanded to accommodate the new element.

Advise

Prototype Advise([in] IVrmlEventOutObserver* eventOutObserver,

[in] VARIANT* userData);

Starts notifying the specified IVrmlEventOutObserver interface of

changes in this field’s value. This method is inherited from the
IVrmlField Interface.

Clear
Prototype Clear();

Clears the field by deleting all of the elements. This method is
inherited from the IVrmIMField Interface.

Clone
Prototype Clone([out, retval]l IVrmIField** field);

Creates a duplicate copy of the COM object. This method is
inherited from the IVrmlField Interface.

PLATINUM WorldView for Developers User Guide 9-73 =

WorldView for Developers Objects

VrmIMFInt32

9-74

Delete
Prototype Delete([in] int index);

Deletes the index'th value. This method is inherited from the
IVrmIMField Interface.

Get1Value
Prototype CetlValue([in] int index, [out, retvall int *value);

Retrieves the index'th integer from the field and stores it in the
value parameter.

GetSize
Prototype GetSize([out, retvall int* size);

Returns the number of integers in the field. This method is
inherited from the IVrmIMField Interface.

GetType
Prototype GetType([out, retval] enumFieldType* type);

Returns the type of this field, which will be MFINT32 (9). This
method is inherited from the IVrmliField Interface.

GetValue
Prototype GetValue([out] int* values);

Copies all of the integers in the field into the values array.

The values array must be large enough to accommodate the result
or a crash may occur. The number of elements required is returned

by the GetSize method.

InsertValue
Prototype InsertValue([in] int index, [in] int value);

Inserts a new value before the index'th value. All values following

the new value are shifted one slot to make space for the new
element.

PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =

VrmIMFNode

Set1Value
Prototype SetlValue([in] int index, [in] int value);

Sets the index'th value in the field to the value parameter.
SetValue

Prototype SetValue([in] int size, [in] int *values);

Sets the value of the field. The size parameter should contain the
number of values in the values array. Make sure the values array
contains at least size elements or a crash may occur.

ToString
Prototype ToString([out, retval] BSTR* s);
Returns a text string representation of the field. The result will be a
legal VRML definition for the field.

Unadvise
Prototype Unadvise([in] IVrmlEventOutObserver*

eventOutObserver);

Stops notifying the specified IVrmlEventOutObserver of changes
in this field’s value. This method is inherited from the I'VrmlField
Interface.

VrmiIMFNode

The VimIMFNode COM object represents a MFNode field in the VRML
scene. An MFNode field specifies zero or more VRML nodes.

The VrmIMFNode object supports the IVrmIMFNode, IVrmIMField and
IVrmlField interfaces.

PLATINUM WorldView for Developers User Guide 9-75 =

® WorldView for Developers Objects

VrmIMFNode

IVrmIMFNode Interface

m 9-76

AddValue
Prototype AddValue([in] IVrmlBaseNode* value);

Adds the value parameter as a new value at the end of the field. The
field will be expanded to accommodate the new element.

Advise
Prototype Advise([in] IVrmlEventOutObserver* eventOutObserver,
[in] VARIANT* userData);

Starts notifying the specified IVrmlEventOutObserver interface of
changes in this field’s value. This method is inherited from the
IVrmlField Interface.

Clear
Prototype Clear();

Clears the field by deleting all of the elements. This method is
inherited from the IVrmIMField Interface.

Clone
Prototype Clone(lout, retval]l IVrmIField** field);

Creates a duplicate copy of the COM object. This method is
inherited from the IVrmlField Interface.

Delete
Prototype Delete([in] int index);

Deletes the index'th node. This method is inherited from the
IVrmlIMField Interface.

PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =

VrmIMFNode

Get1Value

Prototype GetlValue([in] int index,
[out, retvall IVrmliBaseNode **value);

Retrieves the index'th node from the field and stores it in the value
parameter. The node is represented by an [VrmIBaseNode
interface.

GetSize
Prototype CGetSize([out, retvall int* size);

Returns the number of nodes in the field. This method is inherited
from the IVrmIMField Interface.

GetType
Prototype GetType([out, retval] enumFieldType* type);

Returns the type of this field, which will be MENODE (11). This
method is inherited from the IVrmliField Interface.

GetValue
Prototype GetValue([out] IVrmlIBaseNode** values);

Copies all of the nodes in the field into the values array. Each node
is represented by an IVrmlBaseNode interface.

The values array must be large enough to accommodate the result
or a crash may occur. The number of elements required is returned
by the GetSize method.

InsertValue
Prototype InsertValue([in] int index, [in] IVrmiBaseNode* value);

Inserts a new node before the index'th node. All nodes following
the new value are shifted one slot to make space for the new
element.

PLATINUM WorldView for Developers User Guide 9-77 =

WorldView for Developers Objects

VrmIMFNode
Set1Value
Prototype SetlValue([in] int index, [in] IVrmlBaseNode* value);
Sets the index'th node in the field to the node in the value
parameter.
SetValue

Prototype SetValue([in] int size, [in] IVrmiBaseNode **values);

Sets the value of the field. The size parameter should contain the
number of nodes in the values array. Make sure the values array
contains at least size nodes or a crash may occur.

SetValueFromConstMFNode

Prototype SetValueFromConstMFNode([in]
IVrmlConstMFNode* mfnode) ;

Copies the values in the specified IVrmlConstMFNode field into
this field.

SetvValueFromMFNode
Prototype SetValueFromMFNode([in] IVrmIMFNode* mfnode);

Copies the values in the specified IVrmIMFNode field into this
field.

ToString
Prototype ToString([out, retval] BSTR* s);

Returns a text string representation of the field. The result will be a
legal VRML definition for the field.

Unadvise
Prototype Unadvise([in] IVrmlEventOutObserver*
eventOutObserver);

Stops notifying the specified IVrmlEventOutObserver of changes
in this field’s value. This method is inherited from the I'VrmlField
Interface.

9-78 PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =
VrmIMFRotation

VrmiMFRotation

The VrmIMFRotation COM object represents a MFRotation field in the
VRML scene. An MFRotation field specifies zero or more arbitrary
rotations. Each rotation is specified by four floating point values. The first
three values specify a normalized rotation axis vector about which the
rotation takes place. The fourth value specifies the amount of right-
handed rotation about that axis in radians.

The VrmIMFRotation object supports the IVrmIMFRotation,
IVrmIMField and IVrmlField interfaces.

IVrmIiMFRotation Interface

AddValue
Prototype AddValue([in] float x, [in] float y, [in] float z,
[in] float angle);

Adds a new rotation to the end of the field. The X, Y and Z
components of the rotation axis will be assigned the values x, y,
and z, respectively. The rotation angle will be assigned the value
angle.
Advise
Prototype Advise([in] IVrmlEventOutObserver* eventOutObserver,
[in] VARIANT* userData);

Starts notifying the specified IVrmlEventOutObserver interface of
changes in this field’s value. This method is inherited from the
IVrmlField Interface.

Clear
Prototype Clear();

Clears the field by deleting all of the elements. This method is
inherited from the IVrmIMField Interface.

PLATINUM WorldView for Developers User Guide 9-79 =

WorldView for Developers Objects

VrmIMFRotation

Clone
Prototype Clone([out, retval]l IVrmlIField** field);

Creates a duplicate copy of the COM object. This method is
inherited from the IVrmlField Interface.

Delete
Prototype: Delete([in] int index);

Deletes the index'th rotation. This method is inherited from the
IVrmIMField Interface.

Get1Value

Prototype GetlValue([in] int index, [out] float *x,
[out] float *y, [out] float *z, [out] float *angle);

Retrieves the index’th rotation. The rotation axis is stored in the
variables x, y, and z, respectively, and the angle of rotation is stored
in the variable angle.

GetSize
Prototype GetSize([out, retvall int* size);

Returns the number of rotations in the field. This method is
inherited from the IVrmIMField Interface.

GetType
Prototype GetType([out, retval] enumFieldType* type);

Returns the type of this field, which will be MFROTATION (13).
This method is inherited from the IVrmlField Interface.

9-80 PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =

VrmIMFRotation

GetValue
Prototype GetValue([out] float* values);

Copies all of the rotations in the field into the values array. The first
rotation will be copied into values[0], values[1], values[2], and
values[3] in the order X, Y, Z, angle; the second triple into
values[4...7], and so on.

The values array must be large enough to accommodate the result
or a crash may occur. The number of elements required is 4 times
the result of the GetSize method.

InsertValue

Prototype InsertValue([in] int index, [in] float x, [in] float v,
[in] float z, [in] float angle);

Inserts a new rotation before the index’th rotation. The X, Y and Z
components of the rotation axis are assigned the values x, y, and z,
respectively. The rotation angle is assigned the value angle. The
field is expanded to accommodate the new rotation and the
indexth rotation and all rotations following it are shifted one slot
to make space for the new element.

Set1Value

Prototype SetlValue([in] int index, [in] float x, [in] float y,
[in] float z, [in] float angle);

Sets the index’th rotation in the field. The X, Y and Z components
of the rotation axis are assigned the values x, y, and z, respectively.
The rotation angle is assigned the value angle.

SetValue
Prototype SetValue([in] int size, [in] float *values);

Sets the value of the field. The size parameter should contain the
number of rotations in the values array. The values array should
contain rotations in X, Y, Z, angle order and packed one after the
other. Make sure the values array contains at least size*4 elements
or a crash may occur.

PLATINUM WorldView for Developers User Guide 9-81 =

® WorldView for Developers Objects

VrmIMFString

ToString
Prototype ToString([out, retval] BSTR* s);
Returns a text string representation of the field. The result will be a
legal VRML definition for the field.

Unadvise
Prototype Unadvise([in] IVrmlEventOutObserver*

eventOutObserver);

Stops notifying the specified IVrmlEventOutObserver of changes
in this field’s value. This method is inherited from the IVrmlField
Interface.

VrmIMFString

The VrmIMFString COM object represents a MFString field in the VRML
scene. An MFString field specifies zero or more strings.

The VrmIMFString object supports the IVrmIMFString, IVrmIMField and
IVrmlField interfaces.

IVrmIMFString Interface

AddValue
Prototype AddValue([in] BSTR value);

Adds the value parameter as a new string at the end of the field. The
field will be expanded to accommodate the new element.

Advise
Prototype Advise([in] IVrmlEventOutObserver* eventOutObserver,
[in] VARIANT* userData);

Starts notifying the specified IVrmlEventOutObserver interface of
changes in this field’s value. This method is inherited from the
IVrmlField Interface.

m 9-82 PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =

VrmIMFString

Clear
Prototype Clear();

Clears the field by deleting all of the elements. This method is
inherited from the IVrmIMField Interface.

Clone
Prototype Clone([out, retval]l IVrmlIField** field);

Creates a duplicate copy of the COM object. This method is
inherited from the IVrmlField Interface.

Delete
Prototype Delete([in] int index);

Deletes the index’th string. This method is inherited from the
IVrmIMField Interface.

Get1Value
Prototype GetlValue([in] int index, [out, retval] BSTR* value);

Retrieves the index'th string from the field and stores it in the value
parameter.

GetSize
Prototype GetSize([out, retvall int* size);

Returns the number of strings in the field. This method is inherited
from the IVrmIMField Interface.

GetType
Prototype GetType([out, retval] enumFieldType* type);

Returns the type of this field, which will be MESTRING (15). This
method is inherited from the IVrmliField Interface.

PLATINUM WorldView for Developers User Guide 9-83 =

WorldView for Developers Objects

VrmIMFString

9-84

GetValue
Prototype CGetValue([out] BSTR* values);
Copies all of the strings in the field into the values array. The values
array must be large enough to accommodate the result or a crash

may occur. The number of elements required is returned by the
GetSize method.

InsertValue
Prototype InsertValue([in] int index, [in] BSTR value);

Inserts a new string before the index'th string. All strings following
the new value are shifted one slot to make space for the new
element.

Set1Value
Prototype SetlValue([in] int index, [in] BSTR value);

Sets the index'th string in the field to the string in the value
parameter.

SetValue
Prototype SetValue([in] int size, [in] BSTR *values);

Sets the value of the field. The size parameter should contain the
number of strings in the values array. Make sure the values array
contains at least size strings or a crash may occur.

ToString
Prototype ToString([out, retval] BSTR* s);

Returns a text string representation of the field. The result will be a
legal VRML definition for the field.

Unadyvise

Prototype Unadvise([in] IVrmlEventOutObserver*
eventOutObserver);

Stops notifying the specified IVrmlEventOutObserver of changes
in this field’s value. Inherited from the IVrmiField Interface.

PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =
VrmIMFTime

VrmIMFTime

The VrmIMFTime COM object represents a MFTime field in the VRML
scene. An MFTime field specifies zero or more time values, which are
double-precision floating point numbers.

The VrmIMFTime object supports the IVrmIMFTime, IVrmIMField and
IVrmlField interfaces.

IVFkrmIMFTime Interface

AddValue
Prototype AddValue([in] double time);

Adds the value parameter as a new time value at the end of the
field. The field will be expanded to accommodate the new element.

Advise

Prototype Advise([in] IVrmlEventOutObserver* eventOutObserver,
[in] VARIANT* userData);

Starts notifying the specified IVrmlEventOutObserver interface of
changes in this field’s value. This method is inherited from the
IVrmlField Interface.

Clear
Prototype Clear();

Clears the field by deleting all of the elements. This method is
inherited from the IVrmIMField Interface.

Clone
Prototype Clone([out, retval]l IVrmlIField** field);

Creates a duplicate copy of the COM object. This method is
inherited from the IVrmlField Interface.

PLATINUM WorldView for Developers User Guide 9-85 =

WorldView for Developers Objects

VrmIMFTime

9-86

Delete
Prototype Delete([in] int index);

Deletes the index'th value. This method is inherited from the
IVrmIMField Interface.

Get1Value
Prototype GetlValue([in] int index, [out, retvall double* time);

Retrieves the index'th time value from the field and stores it in the
value parameter.

GetSize
Prototype GetSize([out, retvall int* size);

Returns the number of time values in the field. This method is
inherited from the IVrmIMField Interface.

GetType
Prototype GetType([out, retval] enumFieldType* type);

Returns the type of this field, which will be MFTIME (20). This
method is inherited from the IVrmliField Interface.

GetValue
Prototype GetValue([out] double* values);

Copies all of the time values in the field into the values array.

The values array must be large enough to accommodate the result
or a crash may occur. The number of elements required is returned
by the GetSize method.

InsertValue
Prototype InsertValue([in] int index, [in] double time);

Inserts a new time value before the index’th value. All values
following the new value are shifted one slot to make space for the
new element.

PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =

VrmIMFTime

Set1Value
Prototype SetlValue([in] int index, [in] double time);

Sets the index’th time value in the field to the value parameter.

SetValue
Prototype SetValue([in] int size, [in] double *values);

Sets the value of the field. The size parameter should contain the
number of time values in the values array. Make sure the values
array contains at least size elements or a crash may occur.

ToString
Prototype ToString([out, retval] BSTR* s);

Returns a text string representation of the field. The result will be a
legal VRML definition for the field.

Unadvise
Prototype Unadvise([in] IVrmlEventOutObserver*
eventOutObserver);

Stops notifying the specified IVrmlEventOutObserver of changes
in this field’s value. This method is inherited from the I'VrmlField
Interface.

PLATINUM WorldView for Developers User Guide 9-87 =

® WorldView for Developers Objects

VrmIMFVec2f

VrmIMFVec2f

The VimIMFVec2f COM object represents a MFVec2f field in the VRML
scene. An MFVec2f field specifies zero or more 2D vectors. Each vector is
a pair of floating point values.

The VrmIMFVec2f object supports the IVrmIMFVec2f, IVimIMField and
IVrmlField interfaces.

IVrmIMFVec2f Interface

AddValue
Prototype AddValue([in] float x, [in] float y);
Adds a new 2D vector to the end of the field. The X and Y
components of the new vector will be assigned the values x and y,
respectively.

Advise

Prototype Advise([in] IVrmlEventOutObserver* eventOutObserver,
[in] VARIANT* userData);

Starts notifying the specified IVrmlEventOutObserver interface of
changes in this field’s value. This method is inherited from the
IVrmlField Interface.

Clear
Prototype Clear();

Clears the field by deleting all of the elements. This method is
inherited from the IVrmIMField Interface.

Clone
Prototype Clone(l[out, retval]l IVrmIField** field);

Creates a duplicate copy of the COM object. This method is
inherited from the IVrmlField Interface.

m 9-88 PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =

VrmIMFVec2f

Delete
Prototype Delete([in] int index);

Deletes the index’th color triple. This method is inherited from the
IVrmIMField Interface.

Get1Value

Prototype GetlValue([in] int index, [out] float *x,
[out] float *y);

Retrieves the index’th 2D vector and stores the X and Y
components of the vector in the variables x and y, respectively.

GetSize
Prototype GetSize([out, retvall int* size);

Returns the number of 2D vectors in the field. This method is
inherited from the IVrmIMField Interface.

GetType
Prototype GetType([out, retval] enumFieldType* type);

Returns the type of this field, which will be MFVEC2F (17). This
method is inherited from the IVrmliField Interface.

GetValue
Prototype GetValue([out] float* values);

Copies all of the 2D vectors in the field into the values array. The
first 2D vector will be copied into values|0] and values[1] in X, Y
order; the second 2D vector into values[2] and values|3], and so
on.

The values array must be large enough to accommodate the result
or a crash may occur. The number of elements required is 2 times
the result of the GetSize method.

PLATINUM WorldView for Developers User Guide 9-89 =

® WorldView for Developers Objects
VrmIMFVec2f

InsertValue
Prototype InsertValue([in] int index, [in] float x, [in] float y);

Inserts a new 2D vector before the index'th vector. The X and Y
components of the new vector are assigned the values x and y,
respectively. The field is expanded to accommodate the new vector
and the indexth vector and all vectors following it are shifted one
slot to make space for the new element.

Set1Value
Prototype SetlValue([in] int index, [in] float x, [in] float y);

Sets the index’th 2D vector in the field. The X and Y components of
the vector are assigned the values x and y, respectively.

SetValue
Prototype SetValue([in] int size, [in] float *values);

Sets the value of the field. The size parameter should contain the
number of 2D vectors in the values array. The values array should
contain the vectors, in X,Y order and packed one after the other.
Make sure the values array contains at least size*2 elements or a
crash may occur.

ToString
Prototype ToString([out, retval] BSTR* s);

Returns a text string representation of the field. The result will be a
legal VRML definition for the field.

Unadvise
Prototype Unadvise([in]
IVrmlEventOutObserver* eventOutObserver);

Stops notifying the specified IVrmlEventOutObserver of changes
in this field’s value. This method is inherited from the I'VrmlField
Interface.

= 9-90 PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =

VrmIMFVec3f

VrmIMFVec3f

The VimIMFVec3f COM object represents a MFVec3f field in the VRML
scene. An MFVec3f field specifies zero or more 3D vectors. Each vector
consists of three floating point values.

The VimIMFVec3f object supports the IVimIMFVec3f, IVimIMField and
IVrmlField interfaces.

IVrmIMFVec3f Interface

AddValue
Prototype AddValue([in] float x, [in] float y, [in] float z);
Adds a new 3D vector to the end of the field. The X, Y and Z
components of the new vector will be assigned the values x, y and
z, respectively.

Advise
Prototype Advise([in] IVrmlEventOutObserver* eventOutObserver,

[in] VARIANT* userData);

Starts notifying the specified IVrmlEventOutObserver interface of
changes in this field’s value. This method is inherited from the
IVrmlField Interface.

Clear
Prototype Clear();

Clears the field by deleting all of the elements. This method is
inherited from the IVrmIMField Interface.

Clone
Prototype Clone(l[out, retval]l IVrmIField** field);

Creates a duplicate copy of the COM object. This method is
inherited from the IVrmlField Interface.

PLATINUM WorldView for Developers User Guide 9-91 =

WorldView for Developers Objects

VrmIMFVec3f

9-92

Delete
Prototype Delete([in] int index);

Deletes the index’th color triple. This method is inherited from the
IVrmIMField Interface.

Get1Value

Prototype GetlValue([in] int index, [out] float *x,
Lout] float *y, [out] float *z);

Retrieves the index’th 3D vector and stores the X, Y and Z
components of the vector in the variables x, y and z, respectively.

GetSize
Prototype GetSize([out, retvall int* size);

Returns the number of 3D vectors in the field. This method is
inherited from the IVrmIMField Interface.

GetType
Prototype GetType([out, retval] enumFieldType* type);

Returns the type of this field, which will be MFVEC3F (19). This
method is inherited from the IVrmliField Interface.

GetValue
Prototype GetValue([out] float* values);

Copies all of the 3D vectors in the field into the values array. The
first 3D vector will be copied into values|[0], values[1] and
values[2] in X, Y, Z order; the second 3D vector into values|3...5],
and so on.

The values array must be large enough to accommodate the result
or a crash may occur. The number of elements required is 3 times
the result of the GetSize method.

PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =

VrmIMFVec3f

InsertValue
Prototype InsertValue([in] int index, [in] float x, [in] float v,
[in] float z);

Inserts a new 3D vector before the index’th vector. The X, Y and Z
components of the new vector are assigned the values x, y and z,
respectively. The field is expanded to accommodate the new vector
and the indexth vector and all vectors following it are shifted one
slot to make space for the new element.

Set1Value
Prototype SetlValue([in] int index, [in] float x, [in] float y,
[in] float z);

Sets the index’th 3D vector in the field. The X, Y and Z components
of the vector are assigned the values x, y and z, respectively.

SetValue
Prototype SetValue([in] int size, [in] float *values);

Sets the value of the field. The size parameter should contain the
number of 3D vectors in the values array. The values array should
contain the vectors, in X,Y,Z order and packed one after the other.
Make sure the values array contains at least size*3 elements or a
crash may occur.

ToString
Prototype ToString([out, retval] BSTR* s);

Returns a text string representation of the field. The result will be a
legal VRML definition for the field.

Unadyvise
Prototype Unadvise([in] IVrmlEventOutObserver*
eventOutObserver);

Stops notifying the specified IVrmlEventOutObserver of changes
in this field’s value. This method is inherited from the IVrmlField
Interface.

PLATINUM WorldView for Developers User Guide 9-93 =

® WorldView for Developers Objects

VrmISFBool

VrmISFBool

The VrmISFBool COM object represents an SFBool field in the VRML

scene. An SFBool field contains a single boolean value, either TRUE or
FALSE.

The VrmISFBool object supports the IVrmISFBool and IVrmlField
interfaces.

IVrmISFBool Interface

m 9-94

Advise

Prototype Advise([in] IVrmlEventOutObserver* eventOutObserver,
[in] VARIANT* userData);

Starts notifying the specified IVrmlEventOutObserver interface of
changes in this field's value. This method is inherited from the
IVrmlField Interface.

Clone
Prototype Clone(lout, retval]l IVrmIField** field);

Creates a duplicate copy of the COM object. This method is
inherited from the IVrmlField Interface.

GetType
Prototype GetType([out, retval] enumFieldType* type);

Returns the type of this field, which will be SFBOOL (1). This
method is inherited from the IVrmliField Interface.

GetValue
Prototype GetValue([out] boolean* value);

Returns the value of the field.

SetValue
Prototype SetValue([in] boolean value);

Sets the value of the field.

PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =

VrmISFBool

ToString
Prototype ToString([out, retval] BSTR* s);

Returns a text string representation of the field. The result will be a
legal VRML definition for the field.

Unadvise
Prototype Unadvise([in] IVrmlEventOutObserver*
eventOutObserver);

Stops notifying the specified IVrmlEventOutObserver of changes
in this field’s value. This method is inherited from the IVrmlField
Interface.

PLATINUM WorldView for Developers User Guide 9-95 =

® WorldView for Developers Objects

VrmiSFColor

VrmlISFColor

The VrmISFColor COM object represents an SFColor field in the VRML
scene. An SFColor field contains one RGB (red-green-blue) color triple,
specified by three floating point values.

The VrmISFColor object supports the IVimISFColor and IVrmlField
interfaces.

IVrmISFColor Interface

Advise

Prototype Advise([in] IVrmlEventOutObserver* eventOutObserver,
[in] VARIANT* userData);

Starts notifying the specified IVrmlEventOutObserver interface of
changes in this field's value. This method is inherited from the
IVrmlField Interface.

Clone
Prototype Clone(lout, retval]l IVrmIField** field);

Creates a duplicate copy of the COM object. This method is
inherited from the IVrmlField Interface.

GetBlue
Prototype CGetBlue([out, retval] float* b);

Returns the blue component of the field's RGB color triple.

GetGreen
Prototype GetGreen([out, retvall float* g);

Returns the green component of the field’s RGB color triple.

GetRed
Prototype GetRed([out, retvall float* r);

Returns the red component of the field’s RGB color triple.

m 9-96 PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =

VrmiISFColor

GetType
Prototype GetType([out, retval] enumFieldType* type);

Returns the type of this field, which will be SFCOLOR (4). This
method is inherited from the IVrmliField Interface.

GetValue
Prototype GetValue([out] float *values);

Returns the value of the field in the values array. The red, green and
blue components of the RGB color triple are returned in values|0],
values[1] and values|2], respectively. The values array must be at
least 3 elements in size or a crash may occur.

SetValue
Prototype SetValue([in] float r, [in] float g, [in] float b);
Sets the value of the field’s RGB color triple. The red, green and

blue components of the color are set to the values of ther, gand b
parameters, respectively.

ToString
Prototype ToString([out, retval] BSTR* s);

Returns a text string representation of the field. The result will be a
legal VRML definition for the field.

Unadvise
Prototype Unadvise([in] IVrmlEventOutObserver* eventOutObserver);

Stops notifying the specified IVrmlEventOutObserver of changes
in this field’s value. This method is inherited from the IVrmlField
Interface.

PLATINUM WorldView for Developers User Guide 9-97 =

® WorldView for Developers Objects

VrmiISFFloat

VrmlISFFloat

The VrmISFFloat COM object represents an SFFloat field in the VRML
scene. An SFFloat field contains one single-precision floating point
number.

The VrmlISFFloat object supports the IVrmISFFloat and IVrmlField
interfaces.

IVrmiISFFloat Interface

= 9-98

Advise

Prototype Advise([in] IVrmlEventOutObserver* eventOutObserver,
[in] VARIANT* userData);

Starts notifying the specified IVrmlEventOutObserver interface of
changes in this field's value. This method is inherited from the
IVrmlField Interface.

Clone
Prototype Clone(lout, retval]l IVrmIField** field);

Creates a duplicate copy of the COM object. This method is
inherited from the IVrmlField Interface.

GetType
Prototype GetType([out, retval] enumFieldType* type);

Returns the type of this field, which will be SFFLOAT (6). This
method is inherited from the IVrmliField Interface.

GetValue
Prototype CGetValue([out, retvall float *value);

Returns the value of the field.

SetValue
Prototype SetValue([in] float value);

Sets the value of the field.

PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =
VrmiISFImage

ToString
Prototype ToString([out, retval] BSTR* s);
Returns a text string representation of the field. The result will be a
legal VRML definition for the field.

Unadvise

Prototype Unadvise([in] IVrmlEventOutObserver*
eventOutObserver);

Stops notifying the specified IVrmlEventOutObserver of changes
in this field’s value. This method is inherited from the IVrmlField
Interface.

VrmiISFImage

The VrmlSFImage COM object represents an SFImage field in the VRML
scene. An SFImage field defines an uncompressed two dimensional pixel
image. See Section 5.5 of the VRML 2.0 Specification for a full
explanation of the use of SFImage.

The VrmISFImage object supports the IVrmISFImage and IVrmlField
interfaces.

IVrmISFImage Interface

Advise

Prototype Advise([in] IVrmlEventOutObserver* eventOutObserver,
[in] VARIANT* userData);

Starts notifying the specified IVrmlEventOutObserver interface of
changes in this field's value. This method is inherited from the
IVrmlField Interface.

Clone
Prototype Clone([out, retval]l IVrmIField** field);

Creates a duplicate copy of the COM object. This method is
inherited from the IVrmlField Interface.

PLATINUM WorldView for Developers User Guide 9-99 =

WorldView for Developers Objects

VrmiISFimage

GetComponents
Prototype GetComponents([out, retval] int* components);
Returns the number of components in the image. The number of
components ranges from 1 to 4 and controls how pixel data is

interpreted. See Section 5.5 of the VRML 2.0 Specification for a full
explanation.

GetHeight
Prototype GetHeight([out, retvall int* height);

Returns the height of the image in pixels.

GetPixels
Prototype GetPixels([out] unsigned char *pixels);
Copies the pixel data of the image into the pixels array. The pixels

array must be at least width*height*components bytes in size or a
crash may occur.

The number of bytes occupied by each pixel in the pixels array is
the field's components value, returned by the GetComponents
method. Pixels are packed one after the other without any empty
space between them, starting with the bottom row and ending with
the top row of the image.

GetType
Prototype GetType([out, retval] enumFieldType* type);

Returns the type of this field, which will be SFIMAGE (2). This
method is inherited from the IVrmliField Interface.

GetWidth
Prototype CGetWidth([out, retvall int* width);

Returns the width of the image in pixels.

9-100 PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =

VrmiISFImage

SetValue
Prototype SetValue([in] int width, [in] int height,
[in] int components, [in] unsigned char *pixels);

Sets the field’s image. See the GetPixels method for an explanation
of the pixels array.

ToString
Prototype ToString([out, retval] BSTR* s);

Returns a text string representation of the field. The result will be a
legal VRML definition for the field.

Unadvise

Prototype Unadvise([in] IVrmlEventOutObserver*
eventOutObserver);

Stops notifying the specified IVrmlEventOutObserver of changes
in this field’s value. Inherited from the IVrmiField Interface.

PLATINUM WorldView for Developers User Guide 9-101 m

® WorldView for Developers Objects

VrmiISFInt32

VrmISFInt32

The VrmISFInt32 COM object represents an SFInt32 field in the VRML
scene. An SFInt32 field contains a single 32-bit integer.

The VrmISFInt32 object supports the IVrmISFInt32 and IVrmlField
interfaces.

IVrmISFInt32 Interface

Advise

Prototype Advise([in] IVrmlEventOutObserver* eventOutObserver,
[in] VARIANT* userData);

Starts notifying the specified IVrmlEventOutObserver interface f
changes in this field's value. This method is inherited from the
IVrmlField Interface.

Clone
Prototype Clone(lout, retvall IVrmIField** field);

Creates a duplicate copy of the COM object. This method is
inherited from the IVrmlField Interface.

GetType
Prototype GetType([out, retval] enumFieldType* type);

Returns the type of this field, which will be SFINT32 (8). This
method is inherited from the IVrmliField Interface.

GetValue
Prototype CGetValue([out, retvall int *value);

Returns the value of the field.

SetValue
Prototype SetValue([in] int value);

Sets the value of the field.

" 9-102 PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =
VrmISFNode

ToString
Prototype ToString([out, retval] BSTR* s);

Returns a text string representation of the field. The result will be a
legal VRML definition for the field.

Unadyvise

Prototype Unadvise([in] IVrmlEventOutObserver*
eventOutObserver);

Stops notifying the specified IVrmlEventOutObserver of changes

in this field’s value. This method is inherited from the IVrmlField
Interface.

VrmISFNode

The VrmlSFNode COM object represents an SFNode field in the VRML

scene. An SFNode field specifies a single VRML node, or the value NULL
to indicate that it is empty.

The VrmISFNode object supports the IVrmISFNode and IVrmlField
interfaces.

IVrmISFNode Interface

Advise

Prototype Advise([in] IVrmlEventOutObserver* eventOutObserver,
[in] VARIANT* userData);

Starts notifying the specified IVrmlEventOutObserver interface of
changes in this field's value. This method is inherited from the
IVrmlField Interface.

Clone
Prototype Clone(l[out, retval]l IVrmIField** field);

Creates a duplicate copy of the COM object. This method is
inherited from the IVrmlField Interface.

PLATINUM WorldView for Developers User Guide 9-103 =

WorldView for Developers Objects

VrmISFNode

GetType
Prototype GetType([out, retval] enumFieldType* type);

Returns the type of this field, which will be SENODE (10). This
method is inherited from the IVrmliField Interface.

GetValue
Prototype GetValue([out, retval] IVrmlBaseNode **value);
Returns the value of the field. The returned node is represented by

an IVrmlBaseNode interface. The return value may also be NULL if
the SFNode field is empty.

Note * The representation of NULL will differ depending on the
language you are using; consult the documentation from the
vendor.

SetValue
Prototype SetValue([in] IVrmlBaseNode* value);

Sets the value of the field. The parameter value should either be an
IVrmlBaseNode interface, or NULL to set the field to be empty.

ToString
Prototype ToString([out, retval] BSTR* s);

Returns a text string representation of the field. The result will be a
legal VRML definition for the field.

Unadyvise
Prototype Unadvise([in] IVrmlEventOutObserver*
eventOutObserver);

Stops notifying the specified IVrmlEventOutObserver of changes
in this field’s value. This method is inherited from the IVrmlField
Interface.

9-104 PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =
VrmiSFRotation

VrmiSFRotation

The VrmISFRotation COM object represents an SFRotation field in the
VRML scene. An SFRotation field contains one arbitrary rotation,
specified by four floating point values. The first three floating point
values specify a normalized rotation axis vector about which the rotation
takes place. The fourth value specifies the amount of right-handed
rotation about that axis in radians.

The VrmISFRotation object supports the [IVrmISFRotation and IVrmlField
interfaces.

IVrmiISFRotation Interface

Advise

Prototype Advise([in] IVrmlEventOutObserver* eventOutObserver,
[in] VARIANT* userData);

Starts notifying the specified IVrmlEventOutObserver interface of
changes in this field’s value. This method is inherited from the
IVrmlField Interface.

Clone
Prototype Clone([out, retval]l IVrmlIField** field);

Creates a duplicate copy of the COM object. This method is
inherited from the IVrmlField Interface.

GetAngle
Prototype CGetAngle([out, retvall float* angle);

Returns the field’s angle of rotation in radians.

GetType
Prototype GetType([out, retval] enumFieldType* type);

Returns the type of this field, which will be SFROTATION (12).
This method is inherited from the IVrmlField Interface.

PLATINUM WorldView for Developers User Guide 9-105 =

® WorldView for Developers Objects

VrmiSFRotation

GetValue
Prototype GetValue([out] float *values);

Returns the value of the field in the values array. The X, Y and Z
components of the field's rotation axis are returned in values|0],
values[1] and values|2], respectively. The rotation angle in radians
is returned in values|3]. The values array must be at least 4
elements in size or a crash may occur.

GetX
Prototype GetX([out, retvall float* x);

Returns the X component of the field’s rotation axis.

GetY
Prototype GetY([out, retvall float* y);

Returns the Y component of the field’s rotation axis.

GetZ
Prototype GetZ([out, retvall float* z);

Returns the Z component of the field’s rotation axis.

SetValue

Prototype SetValue([in] float x, [in] float y, [in] float z,
[in] float angle);

Sets the value of the field. The X, Y and Z components of the
rotation axis will be set to the values of the x, y and z parameters,
respectively. The angle of rotation will be set to the value of angle.

ToString
Prototype ToString([out, retval] BSTR* s);

Returns a text string representation of the field. The result will be a
legal VRML definition for the field.

m 9-106 PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =

VrmISFString

Unadvise
Prototype Unadvise([in] IVrmlEventOutObserver*
eventOutObserver);

Stops notifying the specified IVrmlEventOutObserver of changes
in this field’s value. This method is inherited from the IVrmlField
Interface.

VrmISFString

The VrmlISFString COM object represents an SEString field in the VRML
scene. An SFString field specifies a single string.

The VrmISFString object supports the IVrmISEString and IVrmlField
interfaces.

IVrmISFString Interface

Advise
Prototype Advise([in] IVrmlEventOutObserver* eventOutObserver,
[in] VARIANT* userData);

Starts notifying the specified IVrmlEventOutObserver interface of
changes in this field’s value. This method is inherited from the
IVrmlField Interface.

Clone
Prototype Clone(lout, retvall IVrmIField** field);

Creates a duplicate copy of the COM object. This method is
inherited from the IVrmlField Interface.

GetType
Prototype GetType([out, retval] enumFieldType* type);

Returns the type of this field, which will be SFSTRING (14). This
method is inherited from the IVrmliField Interface.

PLATINUM WorldView for Developers User Guide 9-107 m

® WorldView for Developers Objects

VrmISFString
GetValue
Prototype GetValue([out, retvall BSTR* value);
Returns the value of the field.
SetValue
Prototype SetValue([in] BSTR value);
Sets the value of the field to the string in the value parameter.
ToString
Prototype ToString([out, retval] BSTR* s);
Returns a text string representation of the field. The result will be a
legal VRML definition for the field.
Unadvise
Prototype Unadvise([in] IVrmlEventOutObserver*
eventOutObserver);

Stops notifying the specified IVrmlEventOutObserver of changes
in this field’s value. This method is inherited from the IVrmlField
Interface.

m 9-108 PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =
VrmISFTime

VrmISFTime

The VrmISFTime COM object represents an SFTime field in the VRML
scene. An SFTime field contains a single time value, which is a double-
precision floating point number.

The VrmISFTime object supports the IVrmISFTime and IVrmlField
interfaces.

IVFkmISFTime Interface

Advise

Prototype Advise([in] IVrmlEventOutObserver* eventOutObserver,
[in] VARIANT* userData);

Starts notifying the specified IVrmlEventOutObserver interface of
changes in this field's value. This method is inherited from the
IVrmlField Interface.

Clone
Prototype Clone([out, retvall IVrmIField** field);

Creates a duplicate copy of the COM object. This method is
inherited from the IVrmlField Interface.

GetType
Prototype GetType([out, retval] enumFieldType* type);

Returns the type of this field, which will be SFTIME (3). This
method is inherited from the IVrmiField Interface.

GetValue
Prototype CGetValue([out, retval] double *time);

Returns the time value of the field as a double-precision floating
point number.

PLATINUM WorldView for Developers User Guide 9-109 =

® WorldView for Developers Objects

VrmISFTime

SetValue
Prototype SetValue([in] double time);
Sets the time value of the field to the double-precision float point
number in the value parameter.

ToString
Prototype ToString([out, retval] BSTR* s);
Returns a text string representation of the field. The result will be a
legal VRML definition for the field.

Unadvise
Prototype Unadvise([in] IVrmlEventOutObserver*

eventOutObserver);

Stops notifying the specified IVrmlEventOutObserver of changes
in this field’s value. This method is inherited from the IVrmiField
Interface.

m 9-110 PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =
VrmISFVec2f

VrmISFVec2f

The VrmISFVec2f COM object represents an SFVec2f field in the VRML
scene. An SFVec2f field contains one 2D vector, specified by two floating
point values.

The VrmISFVec2f object supports the IVrmISFVec2f and IVrmlField
interfaces.

IVrmISFVec2f Interface

Advise

Prototype Advise([in] IVrmlEventOutObserver* eventOutObserver,
[in] VARIANT* userData);

Starts notifying the specified IVrmlEventOutObserver interface of
changes in this field's value. This method is inherited from the
IVrmlField Interface.

Clone
Prototype Clone([out, retvall IVrmlField** field);
Creates a duplicate copy of the COM object. This method is
inherited from the IVrmlField Interface.

GetType
Prototype GetType([out, retval] enumFieldType* type);
Returns the type of this field, which will be SFVEC2F (16). This
method is inherited from the IVrmiField Interface.

GetValue
Prototype CetValue([out] float *values);
Returns the value of the field in the values array. The X and Y
components of the field’s 2D vector are returned in values[0] and

values[1], respectively. The values array must be at least 2 elements
in size or a crash may occur.

PLATINUM WorldView for Developers User Guide 9-111 m

WorldView for Developers Objects

VrmISFVec2f

GetX
Prototype GetX([out, retvall float* x);
Returns the X component of the field's 2D vector.

GetY
Prototype GetY([out, retvall float* y);
Returns the Y component of the field's 2D vector.

SetValue
Prototype SetValue([in] float x, [in] float y);
Sets the X and Y components of the field’s 2D vector to the values
of the x and y parameters, respectively.

ToString
Prototype ToString([out, retval] BSTR* s);
Returns a text string representation of the field. The result will be a
legal VRML definition for the field.

Unadvise
Prototype Unadvise([in] IVrmlEventOutObserver*

eventOutObserver);

Stops notifying the specified IVrmlEventOutObserver of changes
in this field’s value. This method is inherited from the IVrmlField
Interface.

9-112 PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =
VrmISFVec3f

VrmiISFVec3f

The VrmISFVec3f COM object represents an SFVec3f field in the VRML
scene. An SFVec3f field contains one 3D vector, specified by three
floating point values.

The VrmISFVec3f object supports the IVrmISFVec3f and IVrmlField
interfaces.

IVrmISFVec3f Interface

Advise

Prototype Advise([in] IVrmlEventOutObserver* eventOutObserver,
[in] VARIANT* userData);

Starts notifying the specified IVrmlEventOutObserver interface of
changes in this field's value. This method is inherited from the
IVrmlField Interface.

Clone
Prototype Clone([out, retvall IVrmlField** field);
Creates a duplicate copy of the COM object. This method is
inherited from the IVrmlField Interface.

GetType
Prototype GetType([out, retval] enumFieldType* type);
Returns the type of this field, which will be SFVEC3F (18). This
method is inherited from the IVrmiField Interface.

GetValue
Prototype CetValue([out] float *values);
Returns the value of the field in the values array. The X, Y, and Z
components of the field’s 3D vector are returned in values[0],

values[1] and values[2], respectively. The values array must be at
least 3 elements in size or a crash may occur.

PLATINUM WorldView for Developers User Guide 9-113 =

WorldView for Developers Objects

VrmISFVec3f

GetX
Prototype GetX([out, retvall float* x);
Returns the X component of the field's 3D vector.
GetY
Prototype GetY([out, retvall float* y);
Returns the Y component of the field's 3D vector.
GetZ
Prototype GetY([out, retvall float* z);
Returns the Z component of the field's 3D vector.
SetValue
Prototype SetValue([in] float x, [in] float y, [in] float z);
Sets the X, Y and Z components of the field's 3D vector to the
values of the x, y and z parameters, respectively.
ToString
Prototype ToString([out, retval] BSTR* s);
Returns a text string representation of the field. The result will be a
legal VRML definition for the field.
Unadvise
Prototype Unadvise([in] IVrmlEventOutObserver*
eventOutObserver);

Stops notifying the specified IVrmlEventOutObserver of changes
in this field’s value. This method is inherited from the IVrmiField
Interface.

PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =
VrmlObjectFactory Interface

VrmilObjectFactory Interface

The IVrmlObjectFactory interface is an additional interface supported by
the VrmlBrowser COM object. You can query for IVrmlObjectFactory
from the IVrmlBrowser interface.

The IVrmlObjectFactory interface permits you to create COM API field
objects that are “unattached,” that is, not representing a field or event of
any node in the VRML scene. An unattached field can be used to store
private data for your program, and can be passed to COM API methods
as a parameter.

Note that the methods that create Const field objects also take
parameters specifying initial values. This is provided because there is no
way to modify the value of an unattached Const field once it has been
created.

CreateVrmlConstMFColor

Prototype CreateVrmlConstMFColor([in] int size,
[in] float* values,
[out, retvall IVrmlConstMFColor** field);

Creates a new VrmlConstMFFloat object containing the specified

value and returns its [IVrmlConstMFFloat interface in field. The size
parameter specifies the number of color triples in the values array.
The values array is an array of floating-point numbers containing

RGB color triples, packed one after the other, in R, G, B order.

CreateVrmlConstMFFloat

Prototype CreateVrmlConstMFInt32([in] int size,
[in] float* values,
[out, retvall IVrmlConstMFFloat** field);

Creates a new VrmlConstMFFloat object containing the specified
value and returns its IVrmlConstMFFloat interface in field. The size
parameter specifies the number of values in the values array. The
values array specifies the floating-point values that the new field
object will contain.

PLATINUM WorldView for Developers User Guide 9-115 =

® WorldView for Developers Objects

VrmlObjectFactory Interface

m 9-116

CreateVrmlIConstMFInt32

Prototype CreateVrmlConstMFInt32([in] int size, [in] int* values,
[out, retvall] IVrmlConstMFInt32** field);

Creates a new VrmlConstMFInt32 object containing the specified
value and returns its [IVrmlConstMFInt32 interface in field. The
size parameter specifies the number of integers in the values array.
The values array specifies the integers that the new field object will
contain.

CreateVrmlConstMFNode

Prototype CreateVrmlConstMFNode([in] int size,
[in] IVrmlBaseNode** values,
[out, retvall IVrmlConstMFNode** field);

Creates a new VrmlConstMFNode object containing the specified
value and returns its IVrmlConstMFNode interface in field. The
size parameter specifies the number of nodes in the values array.
The values array specifies the nodes that the new field object will
contain.

CreateVrmlConstMFRotation

Prototype CreateVrmlConstMFRotation([in] int size,
[in] float* values,
[out, retvall IVrmlConstMFRotation** field);

Creates a new VrmlConstMFRotation object containing the
specified value and returns its IVrmlConstMFRotation interface in
field. The size parameter specifies the number of rotations in the
values array. The values array is an array of floating-point numbers
containing rotations, packed one after the other, in X, Y, Z angle
order.

PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =

VrmlObjectFactory Interface

CreateVrmIConstMFString

Prototype CreateVrmlConstMFString([in] int size,
[in] BSTR* values,
[out, retval]l IVrmlConstMFString** field);

Creates a new VrmlConstMFString object containing the specified
value and returns its IVrmlConstMFString interface in field. The
size parameter specifies the number of strings in the values array.
The values array specifies the strings that the new field object will
contain.

CreateVrmlConstMFTime

Prototype CreateVrmlConstMFTime([in] int size,
[in] double* values,
[out, retvall IVrmlConstMFTime** field);

Creates a new VrmlConstMFTime object containing the specified

value and returns its [IVrmlConstMFTime interface in field. The size
parameter specifies the number of time values in the values array.
The values array specifies the time values that the new field object
will contain.

CreateVrmlConstMFVec2f

Prototype CreateVrmlConstMFVec2f([in] int size,
[in] float* values,
[out, retvall IVrmlConstMFVec2f** field);

Creates a new VrmlConstMFVec2f object containing the specified
value and returns its [IVrmlConstMFVec2f interface in field. The
size parameter specifies the number of 2D vectors in the values
array. The values array is an array of floating-point numbers
containing 2D vectors, packed one after the other, in X, Y order.

PLATINUM WorldView for Developers User Guide 9-117 m

WorldView for Developers Objects

VrmlObjectFactory Interface

CreateVrmlConstMFVec3f

Prototype CreateVrmlConstMFVec3f([in] int size,
[in] float* values,
[out, retvall IVrmlConstMFVec3f** field);

Creates a new VrmlConstMFVec3f object containing the specified
value and returns its [IVrmlConstMFVec3f interface in field. The
size parameter specifies the number of 3D vectors in the values
array. The values array is an array of floating-point numbers
containing 3D vectors, packed one after the other, in X, Y, Z order.

CreateVrmliConstSFBool

Prototype CreateVrmlConstSFBool([in] boolean value,
Lout, retval] IVrmlConstSFBool** field);

Creates a new VrmlConstSFBool object containing the specified
value and returns its IVrmlConstSFBool interface in field.

CreateVrmiIConstSFColor

Prototype CreateVrmlConstSFColor([in] float r, [in] float g,
[in] float b,
[out, retval] IVrmlConstSFColor** field);

Creates a new VrmlConstSFColor object containing the specified
value and returns its IVrmlConstSFColor interface in field. The red,
green and blue components of the color are assigned the values r,
g, and b, respectively.

CreateVrmlConstSFFloat
Prototype CreateVrmlConstSFFloat([in] float value,
[out, retvall IVrmlConstSFFloat** field);

Creates a new VrmlConstSFFloat object containing the specified
value and returns the new field object’s IVrmlConstSFFloat
interface in field.

9-118 PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =

VrmlObjectFactory Interface

CreateVrmlConstSFImage

Prototype CreateVrmlConstSFImage([in] int width, [in] int height,
[in] int components, [in] unsigned char *pixels,
[out, retval] IVrmlConstSFImage** field);

Creates a new VrmlConstSFImage object containing the specified
image and returns the new field object’s IVrmlConstSFImage
interface in field.

The image is created with the specified width, height and number
of components as discussed in Section 5.5 of the VRML 2.0
Specification. In the pixels array, each pixel occupies components
bytes. Pixels are packed one after the other, starting at the bottom
row and ending with the top row of the image.

CreateVrmlIConstSFInt32

Prototype CreateVrmlConstSFInt32([in] int value,
Lout, retvall] IVrmlConstSFInt32** field);

Creates a new VrmlConstSFInt32 object containing the specified
value and returns its IVrmlConstSFInt32 interface in field.

CreateVrmlConstSFNode

Prototype CreateVrmlConstSFNode)[in] IVrmlBaseNode *node,
Lout, retval] IVrmlConstSFNode** field);

Creates a new VrmlConstSFNode object containing the specified
node, and returns the new object’s IVimlConstSFNode interface in
field. The specified node should be a IVrmIBaseNode interface
representing the desired node, or NULL if the new SFNode object is
to be empty.

PLATINUM WorldView for Developers User Guide 9-119 =m

WorldView for Developers Objects

VrmlObjectFactory Interface

CreateVrmlConstSFRotation

Prototype CreateVrmlConstSFRotation([in] float x, [in] float vy,
[in] float z, [in] float angle,
[out, retval] IVrmlConstSFRotation** field);

Creates a new VrmlConstSFRotation object containing the
specified value and returns its IVrmIConstSFRotation interface in
field. The X, Y and Z components of the rotation axis are assigned
the values x, y, and z respectively. The rotation angle is assigned the
value angle, which is specified in radians.

CreateVrmIConstSFString
Prototype CreateVrmlConstSFString([in] BSTR value,
[out, retval] IVrmlConstSFString** field);

Creates a new VrmlConstSFString object containing the specified
value and returns its IVrmlConstSFString interface in field.

CreateVrmlConstSFTime
Prototype CreateVrmlConstSFTime([in] double value,
[out, retval] IVrmlConstSFTime** field);

Creates a new VrmlConstSFTime object containing the specified
value and returns its IVrmlConstSFTime interface in field.

CreateVrmlConstSFVec2f

Prototype CreateVrmlConstSFVec2f([in] float x, [in] float vy,
Lout, retval] IVrmlConstSFVec2f** field);

Creates a new VrmlConstSFVec2f object containing the specified
value and returns its IVrmlConstSFVec2f interface in field. The X
and Y components of the vector are assigned the values x and y,
respectively.

9-120 PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =

VrmiObjectFactory Interface

CreateVrmlConstSFVec3f

Prototype CreateVrmlConstSFVec3f([in] float x, [in] float vy,
[in] float z,
[out, retval]l IVrmlConstSFVec3f** field);

Creates a new VrmlConstSFVec3f object containing the specified
value and returns its [VrmlConstSFVec3f interface in field. The X, Y
and Z components of the vector are assigned the values x, y and z,
respectively.

CreateVrmIMFColor
Prototype CreateVrmIMFColor([out, retval] IVrmIMFColor** field);

Creates a new VrmIMFColor object and returns its [IVrmIMFColor
interface. The new field is empty; that is, its value is [].

CreateVrmIMFFloat
Prototype CreateVrmIMFFloat([out, retval] IVrmIMFFloat** field);

Creates a new VrmIMFFloat object and returns its IVrmIMFFloat
interface. The new field is empty; that is, its value is [].

CreateVrmIMFInt32
Prototype CreateVrmIMFInt32([out, retval] IVrmIMFInt32** field);

Creates a new VrmIMFInt32 object and returns its IVimIMFInt32
interface. The new field is empty; that is, its value is [].

CreateVrmIMFNode
Prototype CreateVrmIMFNode([out, retvall IVrmIMFNode** field);

Creates a new VimIMFNode object and returns its IVrimIMFNode
interface. The new field is empty; that is, its value is [].

PLATINUM WorldView for Developers User Guide 9-121 =

WorldView for Developers Objects

VrmlObjectFactory Interface

CreateVrmIMFRotation

Prototype CreateVrmIMFRotation([out, retvall
IVrmIMFRotation** field);

Creates a new VrmlMFRotation object and returns its
IVrmIMFRotation interface. The new field is empty; that s, its value
is [].

CreateVrmIMFString

Prototype CreateVrmIMFString([out, retvall
IVrmIMFString** field);

Creates a new VrmIMFString object and returns its IVrmIMFString
interface. The new field is empty; that is, its value is [].

CreateVrmIMFTime
Prototype CreateVrmIMFTime([out, retval] IVrmIMFTime** field);

Creates a new VimIMFTime object and returns its IVimIMFTime
interface. The new field is empty; that is, its value is [].

CreateVrmIMFVec2f
Prototype CreateVrmIMFVec2f([out, retval] IVrmIMFVec2f** field);

Creates a new VrmIMFVec2f object and returns its IVimIMFVec2f
interface. The new field is empty; that is, its value is [].

CreateVrmIMFVec3f
Prototype CreateVrmIMFVec3f([out, retval] IVrmIMFVec3f** field);

Creates a new VrmIMFVec3f object and returns its IVrmIMFVec3f
interface. The new field is empty; that is, its value is [].

CreateVrmISFBool
Prototype CreateVrm1SFBool([out, retval] IVrmISFBool** field);

Creates a new VrmlSFBool object and returns its [IVrmlSFBool
interface. The value of the new field is FALSE.

9-122 PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =

VrmlObjectFactory Interface

CreateVrmlISFColor
Prototype CreateVrmISFColor([out, retval] IVrmISFColor** field);
Creates a new VrmISFColor object and returns its IVrmISFColor
interface. The value of the new fieldis 0 0 0.
CreateVrmliSFFloat
Prototype CreateVrmISFFloat([out, retval]l IVrmISFFloat** field);

Creates a new VrmlSFFloat object and returns its [IVrmISFFloat
interface. The value of the new field is 0.

CreateVrmISFImage
Prototype CreateVrmISFImage([out, retval] IVrmISFImage** field);

Creates a new VrmlSFImage object and returns its IVrmISFImage
interface. The value of the new field is 0 0 0 (an empty image).

CreateVrmISFInt32
Prototype CreateVrmISFInt32([out, retvall] IVrmISFInt32** field);

Creates a new VrmISFInt32 object and returns its IVrmISFInt32
interface. The value of the new field is 0.

CreateVrmISFNode
Prototype CreateVrmISFNode([out, retvall IVrmISFNode** field);

Creates a new VrmISFNode object and returns its IVimISFNode
interface. The value of the new field is NULL.

CreateVrmiISFRotation
Prototype CreateVrmISFRotation([out, retvall
IVrmISFRotation** field);

Creates a new VrmlSFRotation object and returns its
IVrmlSFRotation interface. The value of the new field is0 0 1 0.

PLATINUM WorldView for Developers User Guide 9-123 =

® WorldView for Developers Objects

VrmlObjectFactory Interface

CreateVrmISFString

Prototype CreateVrmlSFString([out, retvall
IVrm1SFString** field);

Creates a new VrmlSFString object and returns its IVrmISFString
interface. The value of the new field is “ “, the empty string.

CreateVrmISFTime
Prototype CreateVrmISFTime([out, retval] IVrmISFTime** field);

Creates a new VrmISFTime object and returns its IVrmISFTime
interface. The value of the new field is -1.

CreateVrmISFVec2f
Prototype CreateVrmISFVec2f([out, retvall IVrmISFVec2f** field);

Creates a new VrmISFVec2f object and returns its IVrmISFVec2f
interface. The value of the new field is 0 0.

CreateVrmISFVec3f
Prototype CreateVrmlISFVec3f([out, retvall IVrmISFVec3f** field);

Creates a new VrmISFVec3f object and returns its IVrmISFVec3f
interface. The value of the new fieldis 0 0 0.

m 9-124 PLATINUM WorldView for Developers User Guide

WorldView for Developers Objects =

VrmiScriptimplementation Interface

VrmliScriptimplementation Interface

This is a WorldView feature. Standard VRML allows you to use javascript
or Java to implement a VrmlScript. VrmlScriptimplementation is an
interface which allows any language that supports COM to implement a
VrmlScript.

We strongly discourage developers from using any blocking operations,
such as putting up dialog boxes, in script nodes, as this will cause crashes.

The OCX must implement the IVrmlScriptimplementation interface.
IVrmlScriptimplementation is analogous to the Script abstract base class
in the VRML Java Scripting Reference, Section B.9.2.3. The methods in
IVrmlScriptimplementation are also described in the VRML 2.0
Specification, Section 4.12.

IVrmiScriptimplementation Interface

EventsProcessed
Prototype EventsProcessed();

Called after a series of events are received. This method allows a
script that does not rely on the order of events received to generate
fewer events than a Script which generates events each time an
event is received.

PLATINUM WorldView for Developers User Guide 9-125 m

® WorldView for Developers Objects
VrmiScriptimplementation Interface

Initialize
Prototype Initialize([in] IVrmlScriptNode* scriptNode);

This method allows the OCX to perform initialization tasks. It is
invoked before any events are processed by any node in the VRML
file containing the Script node invoking the OCX, including the
Script node itself. No other methods of
IVrmlScriptimplementation will be invoked before the Initialize
method is called.

The scriptNode parameter is an IVrmlScriptNode interface which
enables the OCX to obtain information about the eventlns,
eventOuts and fields of the Script node in which it is embedded. It
is often useful to save the pointer to the IVrmlScriptNode interface
for later use. See [VrmliScriptNode Interface for more information.

ProcessEvent
Prototype ProcessEvent([in] IVrmlEvent* anEvent);

Called each time an event is received by one of the eventlns of the
Script node. The received event is described by the event parameter.
See [VrmlEvent Interface for more information.

Shutdown
Prototype Shutdown();

Invoked when the Script node is deleted, or when the world
containing the Script node is unloaded or replaced by another
world. This enables the OCX to perform any cleanup tasks that it
requires, such as freeing memory or closing files. No other
methods of IVimlIScriptimplementation will be called after this
method is invoked.

m 9-126 PLATINUM WorldView for Developers User Guide

Disabled Interfaces

Describes interfaces which you may be able to see in Visual Basic, but
which are disabled, and will return errors.

Disabled INterfacesccviiiieiiiiieeeieeeeeneeeeeeneecsosscennnnens 10-2

PLATINUM WorldView for Developers User Guide 10-1 =

m Disabled Interfaces
Disabled Interfaces

Disabled Interfaces

WorldView for Developers includes several interfaces which are disabled
and unavailable for use at this time. These interfaces may be visible in
your development environment, but are not documented in this manual,
and will return errors when queried.

10-2

PLATINUM WorldView for Developers User Guide

Error Handling

This chapter describes errors returned using WorldView for Developers.
Introductionciiiiiiiii it 11-2

RetUINEA EFTOrS . .iuiiieieeeeeeeeeneeeaaoceeeeesesssssssssscccaonns 11-2

PLATINUM WorldView for Developers User Guide 11-1 =

® Error Handling

Introduction

Introduction

All of the methods in the WorldView for Developers COM API return
standard Windows HRESULT error codes. The way these error codes are
reported will depend on the language used to access the COM API. In
C++, for instance, the return type of every COM API method is HRESULT.
In Java, however, an exception of the class com.ms.com.ComException
containing the HRESULT error code is thrown.

WorldView for Developers includes several interfaces which are disabled
and unavailable for use at this time. These interfaces may be visible in
your development environment, but are not documented in this manual,
and will return errors when queried.

Returned Errors

If no error occurs during the execution of a method, the return code will
be S_OK. If an error does occur, the return code will be one of the

following values:

VRMLERR_INVALIDEVENTIN

VRMLERR_INVALIDEVENTOUT

VRMLERR_INVALIDEXPOSEDFIELD

VRMLERR_INVALIDFIELD

The specified eventIn does not exist. This is returned
by the GetEventIn method of the IVimINode and
IVrmlScriptNode interfaces.

The specified eventOut does not exist. This is returned
by the GetEventOut method of the IVrmIScriptNode
interface.

The specified exposedField does not exist. This is
returned by the GetExposedField method of the
IVrmINode interface.

The specified field does not exist. This is returned by
the GetField method of the IVrmlScriptNode interface.

PLATINUM WorldView for Developers User Guide

Error Handling =

Returned Errors

VRMLERR_INVALIDFIELDCHANGE

VRMLERR_INVALIDROUTE

VRMLERR_INVALIDVRML

VRMLERR_INVALIDVRMLSYNTAX

VRMLERR_INVALIDNODE

VRMLERR_ARRAYINDEXOUTOFBOUNDS

VRMLERR_ILLEGALARGUMENT

This error may result from a variety of invalid field
changes, such as:

= Adding a node from one world as the child of a
node in another world.

» Creating a circularity in the scene graph.

m Setting an invalid string on enumerated fields, such
as the fogType field of the Fog node.

s Calling the Set1Value, AddValue, InsertValue or
Delete methods on an IVrmlField interface
obtained by the GetEventIn method.

The argument is invalid. This is returned when the
AddRoute or DeleteRoute methods of the
IVrmIBrowser interface are called and one or more of
the arguments is invalid.

The VRML being parsed contains a syntax error. This is
returned by the CreateVrmlFromString,
CreateVrmlFromURL, and LoadURL methods of the
IVrmlBrowser interface.

The VRML being parsed contains a syntax error. This is
returned by the CreateVrmlFromString,
CreateVrmlFromURL, and LoadURL methods of the
IVrmlBrowser interface.

The specified node does not exist. This is returned by
the GetNode method of the IVrmIBrowser interface.

The array index is out of bounds. This is returned
when an array index passed into the COM API is out
of the bounds of the object being read or modified.

The argument is illegal. This is returned when one or
more of the arguments being passed into the COM API
are illegal.

PLATINUM WorldView for Developers User Guide 11-3 =

® Error Handling

Returned Errors

m 11-4 PLATINUM WorldView for Developers User Guide

Sample Applications

Sample Applicationsc.coviiiiiiiiiiiiiiiiiiiiiiiiirieietecsenens A-2
Invoking an OCX from a Script node: OCXDemoccoevvveveencnnns A-3
Software Requirements i A-3
Installation A-3
COMPONENTSo e e e A-3
INSTIUCLIONS o A-4
Embedding WorldView in a C++ Application: Tiny3Dccccovnene. A-4
Software Requirements A-5
Installation A-5
COMPONEGNTSt A-5
INSTIUCLIONS o A-6
Embedding WorldView in a Java Application: JWorldViewContainer A-7
Software Requirements i A-7
Installation A-7
Components A-7
INSTIUCLIONS o A-8

PLATINUM WorldView for Developers User Guide A-1 =

m Sample Applications
Sample Applications

Sample Applications

These samples are provided to illustrate how WorldView for Developers
may be used to create applications, and to demonstrate some of its
features.

Note ¢ There are delays placed in the sample source code to allow
some time for the VRML file to load before trying to get references to
the nodes within them. These time delays are arbitrary, and their
length will depend on the machines on which they are running. A
future release of WorldView for Developers will include a method that
will allow the programmer to determine if the VRML file has finished
loading within the control.

m A-2 PLATINUM WorldView for Developers User Guide

Sample Applications =

Invoking an OCX from a Script node: OCXDemo

Invoking an OCX from a Script node: 0CXDemo

OCXDemo demonstrates how to use WorldView for Developers to
invoke an OCX from a Script node. It displays a scrolling marquee of text
in the VRML window. OCXDemo is a small ActiveX Control written in
C++ invoked from a VRML Script node using WorldView’s clsid: protocol.

Software Requirements

= WorldView for Developers (to run the program)

» Visual C++ 5.0 or above (to edit or recompile the source code)

Installation

This application will be installed in the WorldView for Developers
Samples folder.

1 Register the OCXDemo DLL by typing

regsvr32 ocxdemo.dl]

Note * The program regsvr32 may not be in your PATH. It is located
in your Windows system directory.

2 In Internet Explorer, open the file 0CXDemo.HTML.
3 InVisual C++, open the workspace OCXDemo . dsw to examine the source

code.

Components

OCXDemo.WRL : Main VRML file
0CXDemo.DLL : 0OCXDemo DLL

PLATINUM WorldView for Developers User Guide A-3 =

m Sample Applications

Embedding WorldView in a C++ Application: Tiny3D

Instructions

When OCXDemo is started, it will display a marquee. Text will scroll
across the screen from right to left: new letters are added to the right,
while old characters are pushed off to the left side.

The displayed text is read from the file 0CXDEMO. TXT. To insert text of your
own, simply modify this file.

This is not an interactive demo. To exit, simply close the Internet Explorer
window.

Embedding WorldView in a C++ Application:

Tiny3D

Tiny3D is an example of a simple 3D authoring tool written on top of
WorldView for Developers. Tiny3D is a Windows application, written in
C++ and using the Microsoft Foundation Classes (MFC) application
framework. It is an ActiveX Container which embeds the WorldView
OCX and controls it via WorldView’s COM API.

Tiny3D demonstrates how WorldView for Developers enables you to
create powerful 3D graphics applications with a small amount of code.
Tiny3D creates four types of objects: boxes, cones, cylinders and spheres.
It can create multiple objects in a scene, and can independently position,
rotate, scale and change the color of objects. While Tiny3D'’s
functionality is fairly “tiny,” it is also a tiny program: the executable is a
mere 37K.

Tiny3D is based on a Java applet by the same name written by Chris
Marrin at Silicon Graphics, Inc. This Java applet communicated with the
VRML browser using the Java External Authoring Interface (EAI).
However, the applet ran parallel to the VRML browser on the same HTML
page, rather than embedding the browser within it, and both had to be
run inside a Web browser.

PLATINUM WorldView for Developers User Guide

Sample Applications =
Embedding WorldView in a C++ Application: Tiny3D

Software Requirements

= WorldView for Developers (to run the program)

» Visual C++ 5.0 or above (to edit or recompile the source code)

Installation

This application will be installed in the WorldView for Developers
Samples folder.

1 Launch tiny3d.exe to run the application.

2 In Visual C++, open the workspace tiny3d.dsw to examine the source
code.

Components

TINY3D.EXE : Tiny3D Executable
ROOT.WRL : Main VRML file

PLATINUM WorldView for Developers User Guide A-5 =

m Sample Applications

Embedding WorldView in a C++ Application: Tiny3D

Instructions

1 Launch Tiny3D. It will open with a blank window and a control panel
window.

2 Create an object. Select Box, Cone, Sphere or Cylinder from the Type
combo box, and press the Create button. The object will appear in the
VRML scene and will be listed in the Object List list box. Tiny3D
generates a name for the object by appending the number of objects
in the scene to the type of object created. For example, you might
create Box1, Cone2, then Sphere3.

Once you have created an object, you can control its translation, rotation,
scale and color attributes using the scroll bars. The three scroll bars
associated with Translation control the object’s X, Y and Z translation
components. The scroll bars for Scale control the object’s X, Y and Z
scaling components, and the scroll bars for Color control the object’s R
(Red), G (Green) and B (Blue) components.

The object’s rotation is controlled using three scroll bars labeled X, Y and
Z.In Tiny3D, an object’s rotation is calculated by rotating about the X
axis, then the Y axis, then the Z axis. The X, Y and Z scroll bars control the
rotation about each of the axes. (This method of determining a rotation
is called Euler angles, and differs from the usual VRML concept of a
rotation axis and angle.)

You can create multiple objects and switch between them by selecting the
object’s name in the Object List list box. The scroll bars will update to
show the attributes for the currently selected object. Pressing the Delete
Object button will delete the selected object.

m A-6 PLATINUM WorldView for Developers User Guide

Sample Applications =

Embedding WorldView in a Java Application: JWorldViewContainer

Embedding WorldView in a Java Application:
JWorldViewContainer

JWorldViewContainer is a simple example of embedding WorldView for
Developers in a Java application with the Microsoft Java VM. This sample
also demonstrates how to use the Java EAI in a standalone Java
application that embeds WorldView for Developers.

Software Requirements

= WorldView for Developers (to run the program)
= Microsoft Java VM

m Visual J++ 1.1 or above (to edit or recompile the source code)

Installation

This application will be installed in the WorldView for Developers
Samples folder.

1 To run the application, enter:
view JWorldViewContainer

2 In Visual J++, open the file WorldViewContainer.java to examine the
source code.

Components

WorldViewContainer.class : Java class file
WorldViewContainer.wrl : Main VRML file

PLATINUM WorldView for Developers User Guide A-7 =

m Sample Applications

Embedding WorldView in a Java Application: JWorldViewContainer

Instructions

mE A-8

When JWorldViewContainer is started, it will display a Java frame
window containing a VRML scene and three buttons labeled Red, Green
and Blue. The VRML scene contains a sphere. Pressing the Red, Green or
Blue button will change the color of the sphere.

PLATINUM WorldView for Developers User Guide

Index

A

AboutBox 7-2

accessing the COM API
Microsoft Java VM 4-9

ActiveX Support 1-4

adding a VRML primitive
Microsoft Visual Basic 4-14
Web pages 4-26

adding the component to a dialog box
Microsoft Visual C++ 4-6

adding the control
Microsoft Visual Basic 4-12
Microsoft Visual C++ 4-4

Anchor node 3-4

AutoRotate 6-4

B
BillboardText EXTERNPROTO 3-19
BrowserSettings EXTERNPROTO 3-20

PLATINUM WorldView for Developers User Guide

C
C++4-4
adding the component to a dialog box
4-6
adding the control 4-4
controlling the component 4-5
Runtime applications 5-6
using the COM API 8-3
using the component in a window 4-5
changing the fields of a node
Microsoft Visual Basic 4-17
Web pages 4-28
Collision node 3-4
ColorInterpolator node 3-4
COM (Component Object Model)
introduction 8-2
COM API
accessing in Java 4-9
using from C++ 8-3
using from other languages 8-6
using in Java 8-5
COM API Library 8-6
COM object 6-2

Index-1 =

m Index

ConsoleVisible 6-4
Contacting PLATINUM xvi
containers
Web pages 4-22
controlling the component
Microsoft Visual C++ 4-5

D

DashboardEnabled 6-5
DashboardOn 6-5

data protocol 3-11
DirectionalLight node 3-4
DirectX files 3-28
Dithering 6-6

E

EAI (External Authoring Interface)
structure 9-9
ElevationGrid node 3-4
EMBED tag 3-18
embedding at Runtime
Microsoft Java VM 4-11
Microsoft Visual Basic 4-21
Embedding Support 1-4
embedding the control
at Runtime 5-6
Microsoft Java VM 4-8
Web pages 4-23

m Index-2

Error Handling
introduction 11-2
VRMLERR_ARRAYINDEXOUTOFBOU
NDS 11-3
VRMLERR_ILLEGALARGUMENT 11-3
VRMLERR_INVALIDEVENTIN 11-2
VRMLERR_INVALIDEVENTOUT 11-2
VRMLERR_INVALIDEXPOSEDFIELD
11-2
VRMLERR_INVALIDFIELD 11-2
VRMLERR_INVALIDFIELDCHANGE
11-3
VRMLERR_INVALIDNODE 11-3
VRMLERR_INVALIDROUTE 11-3
VRMLERR_INVALIDVRML 11-3
VRMLERR_INVALIDVRMLSYNTAX 11-
3
Extensions
BillboardText 3-19
BrowserSettings 3-20
PopupText 3-23
StreamingAudioClip 3-26
EXTERNPROTO extensions
BillboardText 3-19
BrowserSettings 3-20
Introduction 3-19
PopupText 3-23
StreamingAudioClip 3-26

F

Features 1-2

Fog node 3-5

FontStyle node 3-5

Frequently Asked Questions xiii
Full Color setting 3-12
FullColor 6-6

PLATINUM WorldView for Developers User Guide

Index =

G
generating Runtime applications 5-2
GetBrowser 0-3, 6-13
getting a reference to the control
Microsoft Visual Basic 4-13
Web pages 4-22
getting a reference to the VrmlBrowser
Object
Microsoft Visual Basic 4-14
Web pages 4-24
GraphicsMode 6-6
GraphicsModeWhenMoving 6-7
GUID
WorldView 6-2
WorldView for Developers 6-2

H
HeadlightOn 6-7
help

WorldView browser xx
Help files

including 5-5
HighQualityText 6-8
HTML

EMBED tag 3-18

PLATINUM WorldView for Developers User Guide

ImageTexture node 3-6
IndexedFaceSet node 3-5
IndexedLineSet node 3-5
Installing WorldView for Developers 2-2,
2-3
Internet Explorer
Java EAI requirements 3-15
using the Java EAI 3-15
invoking an OCX from the Script node
Microsoft Visual Basic 4-20
IWorldView 6-3
Methods 6-3
Properties 6-3
IWorldView interface 6-3
IWorldView methods
GetBrowser 6-3
IWorldView properties
World 6-3
IWorldViewDeveloper
interface 6-4
properties 6-4
IWorldViewDeveloper interface
methods 6-13
IWorldViewDeveloper methods
GetBrowser 6-13
NextViewpoint 6-13
PreviousViewpoint 6-13
Reload 6-13
RestoreView 6-13
StraightenUp 6-14
ViewAll 6-14

Index-3 =

Index

IWorldViewDeveloper properties
AutoRotate 6-4
ConsoleVisible 6-4
DashboardEnabled 6-5
DashboardOn 6-5
Dithering 6-6

FullColor 6-6
GraphicsMode 6-6
GraphicsModeWhenMoving 6-7
HeadlightOn 6-7
HighQualityText 6-8
LoadTextures 6-8
NavigationMode 6-9
NavigationSpeed 6-10
PopupMenuEnabled 6-10
PreventCollisions 6-10
SplashScreenEnabled 6-11
UseAcceleration 6-11
UserHelpFile 6-11
Viewpoint 6-12
WebLinkEnabled 6-12
World 6-12

Java

Runtime applications 5-7
using the COM API 8-5
Java 1.1 support 3-17

Java EAI

requirements for Internet Explorer 3-15
support 3-15

Java in Script Nodes

Java 1.1 support 3-17

Security 3-17

Support 3-17

System.out and System.err 3-17

Index-4

Java VM
accessing the COM API 4-9
embedding at Runtime 4-11
embedding the control 4-8
Microsoft Java and ActiveX integration
4-10
samples 4-11
using Standard Java EAI 4-10
JavaScript and the VRML Console 3-13
JavaScript support 3-13
Variable Scoping 3-13
VRML Console 3-13

L

LoadTextures 6-8

M
Material node 3-6
Methods
IWorldView 6-3
IWorldViewDeveloper 6-13
Microsoft Component Object Model
introduction 8-2
Microsoft Java and ActiveX integration 4-
10
Microsoft Java VM
accessing the COM API 4-9
embedding at Runtime 4-11
embedding the control 4-8
Microsoft Java and ActiveX integration
4-10
using Standard Java EAI 4-10

PLATINUM WorldView for Developers User Guide

Index

Microsoft Visual Basic
adding a VRML primitive 4-14
adding the control 4-12
changing the fields of a node 4-17
embedding at Runtime 4-2 1

getting a reference to the control 4-13

getting a reference to the VrmlBrowser
Object 4-14

invoking an OCX from the Script node

4-20
passing arrays to methods 4-19

positioning and resizing the control 4-

13
receiving events 4-18
removing a node 4-16
Runtime applications 5-7
samples 4-21
Microsoft Visual C++

adding the component to a dialog box

4-6
adding the control 4-4
controlling the component 4-5
Runtime applications 5-6
using the COM API 8-3

using the component in a window 4-5

Microsoft Visual J++
Runtime applications 5-7
using the COM API 8-5

MovieTexture node 3-6

N

NavigationInfo node 3-7

NavigationMode 6-9

NavigationSpeed 6-10

Netscape Navigator
using the Java EAI 3-15

NextViewpoint 6-13

PLATINUM WorldView for Developers User Guide

0
OCX
invoking from the Script node 4-20
OLE Automation interface 7-2
AboutBox 7-2
on-line help xi, xiii

P
passing arrays to methods
Microsoft Visual Basic 4-19
PixelTexture node 3-7
WorldView browser help files xx
PLATINUM, contacting xvi
PointLight node 3-8
PointSet node 3-8
PopupMenuEnabled 6-10
PopupText EXTERNPROTO 3-23
positioning and resizing the control
Microsoft Visual Basic 4-13
PreventCollisions 6-10
PreviousViewpoint 6-13

R
ReadMe file xi, xiii
receiving events
Microsoft Visual Basic 4-18
Web pages 4-29
Reload 6-13
removing a node
Microsoft Visual Basic 4-16
Web pages 4-27
Requirements
software 2-2
system 2-2
Requirements for Internet Explorer 3-15
RestoreView 6-13
Runtime 2-5

Index-5 =

m Index

Runtime applications
C++ 5-6
component requirements 2-5
generating 5-2
Help files 5-5
J++ 5-7
License Agreement 5-5
License keys 5-6
Requirements 5-2
Visual Basic 5-7

S

samples
embedding in a C++ application
(Tiny3D) A-4
embedding in a Java application
(JWorldViewContainer) A-7
introduction A-2
invoking an OCX from a Script node
(OCXDemo) A-3
Java 4-11
Microsoft Visual Basic 4-2 1
Script node 3-8
Security
Java In Script Nodes 3-17
Software Requirements 2-2
Sound node 3-9
SplashScreenEnabled 6-11
SpotLight node 3-9
StraightenUp 6-14
StreamingAudioClip EXTERNPROTO 3-
26

m Index-6

Support for JavaScript 3-13
Variable Scoping 3-13
VRML Console 3-13
Support for the Java EAI 3-15
System Requirements 2-2
System.out and System.err 3-17

T

technical support xi
by email xii, xv
by phone xii, xv
preparing to contact xiv
telephone support xi
Text node 3-10

u
Uninstalling WorldView for Developers 2-
6
UseAcceleration 6-11
UserHelpFile 6-11
using Standard Java EAI
Microsoft Java VM 4-10
using the component in a window
Microsoft Visual C++ 4-5
Using the EMBED tag in HTML
documents 3-18
Using the Java EAI in Netscape Navigator
or Internet Explorer 3-15

PLATINUM WorldView for Developers User Guide

Index

Vv

Variable Scoping 3-13

ViewAll 6-14

Viewpoint 6-12

Viewpoint node 3-10

Visual Basic
adding a VRML primitive 4-14
adding the control 4-12
changing the fields of a node 4-17
embedding at Runtime 4-21

getting a reference to the control 4-13
getting a reference to the VrmlBrowser

Object 4-14

invoking an OCX from the Script node

4-20
passing arrays to methods 4-19

positioning and resizing the control 4-

13

receiving events 4-18
removing a node 4-16
Runtime applications 5-7
samples 4-21

VRML 2.0 nodes 3-4
Anchor 3-4
Collision 3-4
ColorInterpolator 3-4
DirectionalLight 3-4
ElevationGrid 3-4
Fog 3-5
FontStyle 3-5
ImageTexture 3-6
IndexedFaceSet 3-5
IndexedLineSet 3-5
Material 3-6
MovieTexture 3-6
NavigationInfo 3-7
PixelTexture 3-7

PLATINUM WorldView for Developers User Guide

PointLight 3-8

PointSet 3-8

Script 3-8

Sound 3-9

SpotLight 3-9

Text 3-10

Viewpoint 3-10
VRML 2.0 support 3-3
VRML 97 Specification xi, xx
VrmlBaseNode Objects

introduction 9-11

VrmlBaseNode 9-12

VrmlNode 9-13

VrmlScriptNode 9-15
VrmlBrowser Object

introduction 9-17

VrmlBrowser 9-17
VrmlConstField 9-25
VrmlConstMFColor 9-26
VrmlConstMFFloat 9-28
VrmlConstMField 9-29
VrmlConstMFInt32 9-31
VrmlConstMFNode 9-33
VrmlConstMFRotation 9-35
VrmlConstMEString 9-37
VrmlConstMFTime 9-39
VrmlConstMFVec2f 9-41
VrmlConstMFVec3f 9-43
VrmlConstSFBool 9-45
VrmlConstSFColor 9-47
VrmlConstSFFloat 9-49
VrmlConstSFImage 9-51
VrmlConstSFInt32 9-53
VrmlConstSFNode 9-54
VrmlConstSFRotation 9-56
VrmlConstSFString 9-58
VrmlConstSFTime 9-59

Index-7 =

m Index

VrmlConstSFVec2f 9-61
VrmlConstSFVec3f 9-63

VrmlConstSFRotation 9-56
VrmlConstSFString 9-58

VRMLERR_ARRAYINDEXOUTOFBOUN VrmlConstSFTime 9-59
DS 11-3 VrmlConstSFVec2f 9-61
VRMLERR_ILLEGALARGUMENT 11-3 VrmlConstSFVec3f 9-63
VRMLERR_INVALIDEVENTIN 11-2 VrmlField 9-23
VRMLERR_INVALIDEVENTOUT 11-2 VrmIMFColor 9-65
VRMLERR_INVALIDEXPOSEDFIELD 11- VrmlMFFloat 9-68
2 VrmIMField 9-71

VRMLERR_INVALIDFIELD 11-2 VrmIMFInt32 9-73
VRMLERR_INVALIDFIELDCHANGE 11-3 VrmIMFNode 9-75
VRMLERR_INVALIDNODE 11-3 VrmlMFRotation 9-79
VRMLERR_INVALIDROUTE 11-3 VrmIMEString 9-82
VRMLERR_INVALIDVRML 11-3 VrmIMFTime 9-85
VRMLERR_INVALIDVRMLSYNTAX 11-3 VrmIMFVec2f 9-88
VrmlEvent Object 9-20 VrmIMFVec3f 9-91
VrmlEventOutObserver Object 9-21 VrmlObjectFactory 9-115

VrmlField 9-23

VrmlField Objects
Introduction 9-22
VrmlConstField 9-25
VrmlConstMFColor 9-26
VrmlConstMFFloat 9-28
VrmlConstMField 9-29
VrmlConstMFInt32 9-31
VrmlConstMFNode 9-33

VrmlConstMFRotation 9-35

VrmlConstMFString 9-37
VrmlConstMFTime 9-39
VrmlConstMFVec2f 9-41
VrmlConstMFVec3f 9-43
VrmlConstSFBool 9-45
VrmlConstSFColor 9-47
VrmlConstSFFloat 9-49
VrmlConstSFImage 9-51
VrmlConstSFInt32 9-53
VrmlConstSFNode 9-54

m Index-8

VrmlSFBool 9-94
VrmlSFColor 9-96
VrmlSFFloat 9-98
VrmlSFImage 9-99
VrmlSFInt32 9-102
VrmlISFNode 9-103
VrmlSFRotation 9-105
VrmlSEString 9-107
VrmlSFTime 9-109
VrmlSFVec2f 9-111
VrmlSFVec3f 9-113
VrmIMFColor 9-65
VrmlMFFloat 9-68
VrmlMField 9-71
VrmIMFInt32 9-73
VrmIMFENode 9-75
VrmlMFRotation 9-79
VrmIMFString 9-82
VrmIMFTime 9-85
VrmIMFVec2f 9-88

PLATINUM WorldView for Developers User Guide

Index =

VrmIMFVec3f 9-91
VrmlNode 9-13
VrmlObjectFactory 9-115
VrmlScriptimplementation 9-125
VrmlScriptNode 9-15
VrmlSFBool 9-94
VrmlSFColor 9-96
VrmlSFFloat 9-98
VrmlSFImage 9-99
VrmlSFInt32 9-102
VrmlSFNode 9-103
VrmlSFRotation 9-105
VrmlSFString 9-107
VrmlSFTime 9-109
VrmlSFVec2f 9-111
VrmlSFVec3f 9-113

W
Web pages
adding a VRML primitive 4-26
changing the fields of a node 4-28
embedding the control 4-23
getting a reference to the control 4-22
getting a reference to the VrmlBrowser
Object 4-24
receiving events 4-29
removing a node 4-27
working with 4-22
WebLinkEnabled 6-12
World
IWorldView 6-3
IWorldViewDeveloper 6-12
WorldView browser 3-3
described 1-5
WorldView COM object 6-2
WorldView control features 1-3

PLATINUM WorldView for Developers User Guide

WorldView EXTERNPROTO extensions
3-19
WorldView for Developers
described 1-5
Installation 2-2, 2-3
uninstalling 2-6
WorldView for Developers runtimes
described 1-5
WorldView Help Index xi, xiii
WorldView License Agreement 5-5
WorldView OLE Automation interface 7-2
WorldView Professional
described 1-5
WorldView's Full Color setting 3-12

Index-9 =

m Index

m Index-10 PLATINUM WorldView for Developers User Guide

	Table of Contents
	1 • WorldView for Developers Features
	2 • Getting Started
	3 • The WorldView Browser
	4 • WorldView for Developers Containers
	5 • WorldView for Developers Runtimes
	6 • The WorldView COM Object
	7 • WorldView OLE Automation Interface
	8 • External Authoring Interface using COM
	9 • WorldView for Developers Objects
	10 • Disabled Interfaces
	11 • Error Handling
	A • Sample Applications

	Preface
	Philosophy
	Contacting Technical Support
	Technical Support Programs
	Complimentary Support
	Fee-Based Technical Support
	Before You Contact Technical Support

	Contacting PLATINUM
	About This Guide
	Conventions
	Related Publications

	WorldView for Developers Features
	Features
	WorldView Control
	The Power of VRML
	ActiveX Support
	Embedding Support
	The WorldView Product Line

	Getting Started
	Installation
	System Requirements
	Software Requirements
	Installing WorldView for Developers
	Runtime Installation

	Uninstallation

	The WorldView Browser
	The WorldView Browser
	Support for VRML 2.0
	VRML 2.0 Nodes
	data: Protocol
	WorldView's Full Color Setting

	Support for JavaScript
	JavaScript and the VRML Console
	Variable Scoping
	Type Conversion in JavaScript Expressions
	Unsupported Functions

	Support for the Java EAI
	Requirements for Internet Explorer
	Using WorldView’s Java EAI in Web Browsers

	Support for Java in Script Nodes
	Java 1.1 Support
	System.out and System.err
	Security

	Using the EMBED tag in HTML documents
	WorldView EXTERNPROTO Extensions
	BillboardText
	BrowserSettings
	PopupText
	StreamingAudioClip

	DirectX Files

	WorldView for Developers Containers
	Introduction
	Macromedia Director Xtras
	Microsoft Visual C++
	Adding the Component
	Using the Component in a Window
	Controlling the Component
	Adding the Component to a Dialog Box
	Embedding in C++ at Runtime

	Microsoft Java VM
	Embedding the WorldView Component
	Accessing the COM API
	Using Standard Java EAI
	Microsoft Java and ActiveX Integration
	Embedding in J++ at Runtime
	Samples

	Microsoft Visual Basic
	Adding the Component
	Positioning and Resizing the Control in a Visual Basic Form
	Getting a Reference to the Control
	Getting a Reference to the VrmlBrowser Object
	Adding a VRML Primitive to the Scene
	Removing a Node from the Scene
	Changing the Fields of a Node in a VRML Scene
	Receiving Events from a VRML Scene
	Passing Arrays to Methods
	Invoking an OCX from the Script node
	Embedding in Visual Basic at Runtime
	Samples

	Working with Web Pages: HTML and Java
	Getting a Reference to the Control
	Embedding a WorldView for Developers File in an HTML Page
	Getting a Reference to the VrmlBrowser Object
	Adding a VRML Primitive to the Scene
	Removing a Node from the Scene
	Changing the Fields of a Node in a VRML Scene
	Receiving Events from the VRML Scene

	WorldView for Developers Runtimes
	Generating Runtime Applications
	Requirements for Runtime Applications
	Including your own Help files
	WorldView License Agreement
	Embedding WorldView for Developers at Runtime
	Embedding in C++ at Runtime
	Embedding in J++ at Runtime
	Embedding in Visual Basic at Runtime

	The WorldView COM Object
	Introduction
	IWorldView Interface
	IWorldViewDeveloper Interface

	WorldView OLE Automation Interface
	WorldView OLE Automation Interface

	External Authoring Interface using COM
	Introduction
	Using WorldView’s COM API from C++
	Using COM from Java
	Using WorldView’s COM API from other Languages
	WorldView for Developers COM API Library

	WorldView for Developers Objects
	WorldView External Scripting Objects’ Structure
	VrmlBaseNode Objects
	VrmlBaseNode
	VrmlNode
	VrmlScriptNode

	VrmlBrowser Object
	VrmlEvent Object
	VrmlEventOutObserver Object
	VrmlField Objects
	VrmlField
	VrmlConstField
	VrmlConstMFColor
	VrmlConstMFFloat
	VrmlConstMField
	VrmlConstMFInt32
	VrmlConstMFNode
	VrmlConstMFRotation
	VrmlConstMFString
	VrmlConstMFTime
	VrmlConstMFVec2f
	VrmlConstMFVec3f
	VrmlConstSFBool
	VrmlConstSFColor
	VrmlConstSFFloat
	VrmlConstSFImage
	VrmlConstSFInt32
	VrmlConstSFNode
	VrmlConstSFRotation
	VrmlConstSFString
	VrmlConstSFTime
	VrmlConstSFVec2f
	VrmlConstSFVec3f
	VrmlMFColor
	VrmlMFFloat
	VrmlMField
	VrmlMFInt32
	VrmlMFNode
	VrmlMFRotation
	VrmlMFString
	VrmlMFTime
	VrmlMFVec2f
	VrmlMFVec3f
	VrmlSFBool
	VrmlSFColor
	VrmlSFFloat
	VrmlSFImage
	VrmlSFInt32
	VrmlSFNode
	VrmlSFRotation
	VrmlSFString
	VrmlSFTime
	VrmlSFVec2f
	VrmlSFVec3f

	VrmlObjectFactory Interface
	VrmlScriptImplementation Interface

	Disabled Interfaces
	Disabled Interfaces

	Error Handling
	Introduction
	Returned Errors

	Sample Applications
	Sample Applications
	Invoking an OCX from a Script node: OCXDemo
	Software Requirements
	Installation
	Components
	Instructions

	Embedding WorldView in a C++ Application: Tiny3D
	Software Requirements
	Installation
	Components
	Instructions

	Embedding WorldView in a Java Application: JWorldViewContainer
	Software Requirements
	Installation
	Components
	Instructions

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

